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Handwritten signature verification has become one of the most important document authentication methods

that are widely used in the financial, legal, and administrative sectors. Compared with offline methods based

on static signature images, online handwritten signature verification methods are more reliable because of

the temporary dynamic information (e.g., signing velocity, writing force, stroke order) that alleviates the risk

of being forged. However, most existing online handwritten signature verification solutions are reliant on

specific signing devices (e.g., customized pens or writing pads) and require extensive data collection during

the registration phase, resulting in poor adaptability and applicability for new users. In this article, we pro-

pose mmSign, a millimeter wave (mmWave)–based online handwritten signature verification system, which

enables accurate sensing of the user’s hand movements when signing through the superior sensing capabil-

ity of mmWave. mmSign extracts the time-velocity feature maps from the captured mmWave signals by the

carefully designed signal processing algorithms and then exploits a transformer-based verification model for

signature verification. In addition, a novel meta-learning strategy with proposed task generation and data

augmentation methods is introduced in mmSign to teach the verification model to learn effectively with
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limited samples, allowing our model to quickly adapt to new users. Extensive experiments show that mm-

Sign is a robust, efficient, and secure handwritten signature verification system, achieving 84.07%, 87.31%,

91.12%, and 96.54% verification accuracy when 1, 3, 5, and 10 labeled signatures are available, respectively,

while being resistant to common forgery attacks.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing; • Security and

privacy→ Biometrics;

Additional Key Words and Phrases: Signature verification, mmWave sensing, Meta-learning
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1 INTRODUCTION

Biometric-based authentication has gained popularity as a more convenient and reliable way to
achieve secure authentication, which utilizes people’s unique biological characteristics (e.g., finger-
prints [72], irises [45], and behavioral habits [64]) for authentication. Among them, handwritten
signature verification has been widely used as one of the main verification methods for paper doc-
uments in the fields of finance, law, administration, and more. Despite its widespread application,
signature verification is vulnerable to forgery attacks [8, 32], which results in enormous damage.
In the financial sector, for example, signature forgery of paper checks accounts for 66% of finan-
cial fraud activity in 2022 [32]. Moreover, signature forgery also happens in other fields [8, 47, 54],
indicating the significance of handwritten signature verification research.

Depending on the signature acquisition approach, existing signature verification methods can
be divided into two categories: offline signature verification methods [15, 25, 49] and online signa-
ture verification methods [9, 38, 40]. The offline signature verification methods use the user’s static
signature features (i.e., 2D image features) for verification [24]. Since the offline methods consider
only the final static signature features and ignore the dynamic features during the signature
execution process, they are vulnerable to being forged, whereas the online signature verification
methods utilize the user’s dynamic features (e.g., signing velocity, writing force, stroke order) dur-
ing the signature execution process for verification [31]. Compared with offline methods, online
methods can obtain additional dynamic signing information, which makes them more reliable.

Owing to its reliability, a variety of online signature verification schemes have been proposed.
According to different signature acquisition methods, the existing online signature verification
schemes can be divided into four categories: digital signature device-based [50], wearable de-
vice–based [40], camera-based [79], and wireless sensing–based [82] signature verification meth-
ods. While these schemes employ different signature acquisition methods, they essentially leverage
the same idea that different people show distinct dynamic characteristics due to different signing
habits even when signing the same name. We summarize some existing online handwritten signa-
ture verification schemes in Table 1 and find the following limitations.

(1) Low generalizability. Users may sign on different surfaces (e.g., paper documents, tablets)
or with different pens (e.g., signature pens, digital pens). The digital signature device–based on-
line handwritten signature verification systems [38, 40, 50] can only sign on/with specified digital
devices (e.g., digital tablets or pens) and cannot verify signatures on paper documents. In addition,
existing acoustic-based schemes [9, 17, 82] are sensitive to the relative position of the user’s sig-
nature box to the acoustic sensor, which results in rapid system performance degradation when
the position of the user’s signature changes. (2) Low data efficiency. Most of the existing online
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Table 1. Comparison of Online Handwritten Signature Verification Methods

Scheme
Signature

Acquisition Method
Generalizability

Privacy

Protection

Data

Efficiency

User

Experience

[38, 43, 50] Digital Tablets or Pens ✗ ✓ ✗ ✓

[37, 40, 51] Wearable Devices ✓ ✓ ✗ ✗

[79] Camera ✓ ✗ ✗ ✓

[9, 17, 82] Acoustic ✗ ✓ ✓ ✓

mmSign mmWave ✓ ✓ ✓ ✓

handwritten signature verification systems often require a large number of genuine signatures
from new users to achieve good verification performance [16, 31, 50]. Although a large amount
of data can improve system performance, extensive data collection is time-consuming and labor-
intensive, which is not in line with the practical application scenario. (3) Less privacy protec-

tion. Camera-based solutions [79] always shoot the user’s hand at a very close distance during
the signing process, which may cause leakage of the user’s private information such as finger-
prints [48, 71]. As such, a promising handwritten authentication system needs to focus only on
the signature without capturing extra sensitive information from the document. (4) Low user ex-

perience. Wearable device–based online signature verification systems require the user to wear
a specific device (e.g., smartwatch [40, 51], data glove [37]) while signing the document, which is
not convenient in practice and degrades the user experience.

The aforementioned limitations motivate us to design an online signature verification system
that would meet the requirements of high generalizability, adequate privacy protection, high data
efficiency, and good user experience. In this article, we propose mmSign, which leverages the
superb sensing capabilities of millimeter wave (mmWave) to achieve a non-intrusive online hand-
written signature verification with only a few samples. Table 1 illustrates the properties of mmSign
while comparing it with other existing schemes. The basic idea is to use mmWave to sense hand
movements during the user’s signature execution process. Due to the different hand sizes and
signature habits, such as the signing velocity and stroke order of each individual, the features ob-
tained by mmWave radar are different even when signing the same name. Although the idea is
straightforward, we need to address several non-trivial challenges.

• Challenge 1: The raw frequency modulated continuous wave (FMCW) signal obtained from
the mmWave radar contains a lot of noises from surrounding objects and the user’s body.
Therefore, how to eliminate static and dynamic noises and obtain time-velocity feature maps
reflecting the user’s signature information is the first challenge.
• Challenge 2: After getting the time-velocity feature maps, we need to use them to verify

the genuineness of the signature. However, even the same user has slight differences during
different signature execution processes, which results in differences in the generated feature
maps. Therefore, how to design a verification model to extract high-level features that are
robust to changes in the feature maps but still user-specific is another challenge.
• Challenge 3: Most existing signature verification systems require large amounts of train-

ing data to achieve good performance. The massive signature collection for each newly regis-
tered user is impractical, and it reduces the user experience. Therefore, how to achieve a good
verification performance with limited data when new users register is the third challenge.

We propose a series of approaches to tackle the above challenges in mmSign. Firstly, we design
several novel signal processing methods to eliminate various noises and accurately locate hand
movements for extracting time-velocity features during the signature execution process. Then, a
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transformer-based verification model is designed to encode the input feature maps into a high-level
vector, and verify the genuineness of the signature. In order to improve the generalization ability
and robustness of the designed verification model, we design three data augmentation schemes
based on the variation characteristics of the mmWave signal during the signature execution pro-
cess. Finally, with the help of a designed task generation strategy, a meta-learning framework is
introduced in mmSign to quickly adapt to newly registered users using only a few samples.

Our contributions in this article are summarized as follows:

• We propose mmSign, the first mmWave-based non-invasive online handwritten signature
verification system, which is applicable to any writing surface without any privacy leakage
and is data efficient and user-friendly.
• We propose a series of signal processing methods to obtain the informative hand-signing

features from the raw FMCW signals. Specifically, a sub-signal generation algorithm and
a feature extraction method are designed to accurately localize the hand movements and
obtain the time-velocity feature maps, respectively.
• We design a novel transformer-based verification model to verify the authenticity of the

signature. Together with the proposed three data augmentation methods based on the vari-
ation characteristics of mmWave signals during the signature execution process, mmSign
achieves favorable verification performance.
• We formulate the handwritten signature verification task as a meta-learning problem and

design a meta-learning framework to ensure that new users can quickly adapt to our system
with only a few samples. In addition, a task generation strategy is proposed to enhance the
performance of meta-learning.
• We conduct a comprehensive evaluation of mmSign in multiple real-world environments

using various signature pens and writing surfaces. Evaluation results demonstrate mmSign’s
good adaptability to new users. Security analysis is also conducted to show that mmSign is
resistant to common forgery attacks.

The rest of this article is organized as follows. We briefly review the related works in Section 2.
We present the design details of mmSign in Section 3. We evaluate the performance of mmSign
through extensive experiments in Section 4. Then, we present the results of the user study in
Section 5. Finally, in Sections 6 and 7, we discuss the remaining problems and conclude this article,
respectively.

2 RELATED WORK

In this section, we briefly review the related works on handwritten signature verification, mmWave
sensing, and few-shot learning in wireless sensing.

2.1 Signature Verification

Offline signature verification systems. The offline signature verification system registers the
user’s static signature into the system through an offline signature acquisition device (e.g., scanner,
camera). When the user logs in again, the static signature used to log in is compared with the regis-
tered signature to determine whether the user is legitimate. Since the offline signature verification
system represents signatures as images, the key to achieving accurate signature verification is to
extract the desirable features from the signature image.

Many research efforts have been devoted to finding good handcrafted feature representations for
offline signatures. Oliveira et al. [49] used graphometric features, such as the ratio of height/width,
the symmetry, and the empty spaces between strokes, to examine handwriting for signature
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verification. Drouhard et al. [19] leveraged the directional probability density function obtained
from the gradient of the signature outline to represent the directional features, which respond to
the direction of the signature’s strokes. With the development of deep learning, many researchers
have attempted to use deep learning models to extract features directly from the raw signature im-
age. SigNet [15] modeled the signature verification task with a convolutional Siamese network to
realize offline writer-independent signature verification. Soleimani et al. [59] proposed to use Deep
Multitask Metric Learning (DMML) for offline signature verification by applying skilled forgery
knowledge in the feature learning process. Hafemann et al. [25] formulated the offline signature
verification problem as a meta-learning problem and used extended Model Agnostic Meta Learning
(MAML) to improve the classifier adaptation to new users. However, offline handwritten signatures
based on static images are vulnerable to being forged.

Online signature verification systems. Online signature verification is also known as dy-
namic signature verification. Unlike offline systems, online signature verification systems utilize
the dynamic information (e.g., signing velocity, signing pressure, and stroke order) of the signer
while signing as the basis for verification. Therefore, online signature verification systems present
higher reliability than conventional offline approaches.

The most classic online signature acquisition devices are digital tablets [38] and electronic
pens [13, 46, 50, 55], both of which can obtain temporal dynamic information (e.g., signing pressure,
pen inclination, velocity, and acceleration) about the user’s signature process through the built-in
sensors, such as gyroscopes, inertial measurement units, and strain gauges. However, both of these
methods require signing on a designated digital signature medium (e.g., tablet), which makes them
inapplicable to situations in which users sign on paper documents in their daily lives. To solve this
problem, wearable device–based online signature verification methods are proposed. For exam-
ple, Levy et al. [40] leveraged the smartwatch to capture movement data (i.e., accelerometer and
gyroscope measurements) from the built-in sensors during the signature execution process and
trained a classifier to determine whether a query signature was genuine or forged. PPGSign [51]
proposed to leverage the photoplethysmography (PPG) sensors in the wrist-worn wearable device
to obtain the unique blood flow changes in the user’s hand movement during the signing process
to verify the authenticity of the signature. Kamel et al. [37] proposed to use the data glove to ob-
tain information about the multiple degrees of freedom obtained for each finger and hand. They
used the singular value decomposition numerical tool for signature classification and verification.
Although these solutions do not require a signature medium, they do require the signer to wear
specific hardware devices, which is unrealistic in practice and reduces the user experience. Ya-
suda et al. [79] proposed to use low-cost webcams for non-intrusive online handwritten signature
verification. However, this solution raises privacy issues.

The latest works take advantage of the sensing capability of acoustic signals. ASSV [17] is the
first system that uses acoustic signals transmitted and received by smartphones to realize signature
verification. SilentSign [9] is another acoustic-based online signature verification system that lever-
ages acoustic signals to measure the change in distance of the pen tip when signing and develops a
phase-based distance measurement method for signature verification. However, existing acoustic-
based handwritten signature verification schemes model the whole hand/pen as a single reflection
point and intentionally neglect weak multi-path signals. This approach means that the final signal
obtained is the result of the two moving parts (the user’s hand and the pen’s upper part, which will
be explained in Section 3.2.3) canceling each other out, which is insufficient to accurately capture
the user’s hand/pen movement features during the signing process, particularly when there
are significant changes in the signature position. Additionally, existing acoustic-based methods
leverage the channel impulse response (CIR) phase to estimate the hand/pen moving patterns,
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which is heavily dependent on the target distance [70]. For instance, experiments conducted at
ASSV [17] reveal that when the line-of-sight (LOS) distance between the signature position and the
acoustic sensor is 6 cm, the average signature verification accuracy is 89.95%, but it rapidly drops
to 29.95% when this distance is reduced to 3 cm. Similarly, although SilentSign [9] demonstrates
better performance with its designed algorithms, the accuracy decreases by 20% when the
relative vertical position (perpendicular to LOS) changes by 10 cm, which is not acceptable in
signature verification. In this article, we use commercial mmWave radar for online handwritten
signature verification. mmSign has higher accuracy and stronger anti-interference capability
with the large bandwidth of mmWave compared with the above acoustic-based online signature
verification methods.

2.2 mmWave Sensing

With the rapid development of wireless sensing technologies, recent works propose to leverage
wireless signals, such as acoustic signals [10, 66], Wi-Fi signals [26, 67], and mmWave signals [35,
42] for various fine-grained sensing tasks. Among these wireless signals, mmWave, with its short
wavelength and high frequency, can sense the tiny movements of the target more accurately.

Recently, researchers have used mmWave in various sensing tasks, such as human activity
recognition [36, 57], vital sign monitoring [11, 78], audio reconstruction [30, 63], and user iden-
tification [23, 77]. In addition, many researchers use mmWave for authentication. For example,
VocalPrint [41] uses mmWave signals to capture the unique characteristics of a user’s vocal cord
vibrations when they are speaking to achieve a secure and attack-resistant authentication. Heart-
Print [68] is a commercial mmWave radar-based multi-user authentication method, which first
locates and separates different users through a designed clustering algorithm, and then uses the
proposed signal energy comparison method and feature extraction method for heartbeat feature
extraction to achieve continuous multi-user authentication. Likewise, M-Auth [69] adopts a sim-
ilar idea to leverage the user’s unique breathing pattern for multi-user authentication. Moreover,
mmFace [75] implements a reliable liveness detection and face authentication system that works
even under the occlusion of face masks by extracting facial biometric and structural features when
the mmWave signals bounce off the human face. To the best of our knowledge, mmSign is the first
work that uses commodity mmWave radar to achieve online handwritten signature verification.

2.3 Few-shot Learning in Wireless Sensing

Despite the success of deep learning in various tasks [27, 56, 81], they require large amounts of
data and multiple iterations for training multiple models in different scenarios. To address this
problem, few-shot learning algorithms [20, 58, 61] are proposed to achieve fast domain adaptation
with only a few labeled samples from different conditions.

With the prosperity that few-shot learning has brought to the computer vision area [65, 80],
more and more researchers have harnessed few-shot learning methods into the implementation of
wireless sensing systems. For instance, MetaSense [22] designs a task generation strategy to effec-
tively leverage the available data and enhance the performance of meta-training. GazeGraph [39]
is a cognitive context sensing system that uses the human gaze as a sensing modality, which uses
the few-shot learning strategy to quickly adapt to unseen perceptual scenarios using a small num-
ber of instances. OneFi [73] is a Wi-Fi-based human gesture recognition system that enables the
recognition of unseen gestures with only one (or few) labeled samples assisted by the few-shot
recognition mechanism. In addition, CAUTION [64] is able to build an accurate user model for
a Wi-Fi channel state information (CSI)-based human authentication system with a very limited
number of CSI training samples. Inspired by these works, we design a novel meta-learning strategy
to adapt our handwritten verification model to new users with a few samples.
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Fig. 1. System overview.

3 SYSTEM DESIGN

3.1 Overview

Figure 1 presents the overview of mmSign, an mmWave-based online handwritten signature
verification system built on commodity mmWave radar. The core idea of mmSign is to make the
base model learn to recognize the authenticity of a new user’s handwritten signature quickly,
thereby enabling fast adaptation to new users with only a few labeled samples. Specifically, there
are two phases in mmSign: the base model training phase and meta-learning-based new user
adaptation phase.

Base model training phase: The mmWave radar first obtains the raw FMCW data when
the users sign their names. Then, the static noises are filtered from the raw FMCW data, and the
sub-intermediate frequency (sub-IF) signals are obtained by the designed sub-signal generation
algorithm. Next, the generated sub-IF signals are used to obtain the Range-Doppler Maps (RDMs)
that respond to the hand movement through the designed RDM generation algorithm, and the
generated RDMs are transformed into the time-velocity feature map. Finally, in the base model
training module, the obtained feature maps are first augmented by the proposed data augmentation
algorithms and then fed into the transformer-based verification model for based model training.

Meta-learning-based new user adaptation phase: When new users register their handwrit-
ten signature in mmSign, a meta-learning framework is introduced to avoid intensive data re-
collection and reduce the time overhead of the model training process. In addition, a designed task
generation strategy is used to provide multiple tasks in the meta-training process to improve the
efficiency of meta-training. These generated tasks are leveraged to teach the base model to learn a
new task (i.e., verify the genuineness of the new user’s handwritten signature) quickly and update
the base model with only a few signature samples.

3.2 Data Processing

3.2.1 Data Collection and Static Noise Elimination. The mmWave radar transmits the FMCW
signal, that is, a chirp. The frequency of the chirp signal increases linearly with time t and can be
expressed as

f = f0 + St , (1)
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ALGORITHM 1: Static Noise Elimination Algorithm

Input :S : raw IF signal matrix

NF : frame number

NI : IF signal number of each frame

Output :S ′: denoised IF signal matrix

1 Initialize an empty denoised IF signal matrix S ′

2 for i = 0; i < NF − 1; i = i + 1 do

3 n ← ∅ � Initialize the static noise vector

4 n ← 1
NI

∑NI−1
m=0 S (i,m, :) � Calculate the static noise vector

5 for j = 0; j < NI − 1; j = j + 1 do

6 t ← S (i, j, :) � Get the j-th raw IF signal in the i-th frame

7 S ′(i, j, :) ← t − n � Calculate the denoised IF signal vector

8 end

9 end

where f0 is the starting frequency and S is the frequency modulation slope. Suppose that the
amplitude of the transmitted signal at time t is A; then, the transmitted sinusoidal FMCW signal
s

T
(t ) can be expressed as

s
T

(t ) = A cos

[
2π

(
f0t +

St2

2

)]
. (2)

When the transmitted signal encounters an obstacle (e.g., the user’s hand) at a distance d , the radar
will receive a delayed version of the transmitted signal s

R
(t ), which can be expressed as

s
R

(t ) = αA cos

[
2π

(
f0 (t − τ ) +

S (t − τ )2

2

)]
, (3)

where α is the path loss, τ = 2d/c is the time delay, and c is the speed of light. Finally, the trans-
mitted signal s

T
(t ) is mixed with the received signal s

R
(t ), and a low-pass filter is used to filter out

the sum frequency components to obtain the IF signal:

s
I F

(t ) = LPF {s
T

(t ) · s
R

(t )} = A
I F

cos
(
2π f

I F
t + ϕ

I F

)
, (4)

where A
I F

is the amplitude of the IF signal, f
I F
= Sτ = 2dS/c is known as the beat frequency, and

ϕ
I F

is the phase. Therefore, the IF signal after sampling can be expressed as

s
I F

(n) = s
I F

(t ) · μ (n), n = 0, 1, . . . ,NS − 1, (5)

where μ (n) is the unit step sequence and NS is the number of samples per IF signal. Combining
the signals from NF radar frames, we can obtain the raw 3D matrix S of size NF ×NI ×NS , where
NI is the number of IF signals in each frame.

In addition to the user’s hand movements, mmWave radar senses static information about the
user’s body as well as the surrounding environment (e.g., walls, tables, and chairs), which leads to
the generated feature maps containing a lot of static noises. To eliminate these static noises, we de-
sign a static noise elimination algorithm (see Algorithm 1). Specifically, the mean value of all chirps
in each radar frame is leveraged to represent the static noise vector (Lines 3–4). Thus, the denoised
signal can be obtained by subtracting the static noise vector from the raw signal (Lines 6–7).

3.2.2 Sub-signal Generation. After removing the static noises, we need to accurately locate the
position of the user’s hand to extract useful signals that can reflect the user’s handwritten signa-
ture execution process. However, low-cost commercial mmWave radars cannot guarantee accurate
range estimation under a low signal-to-noise ratio (SNR) based on a single IF signal.
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Fig. 2. Sub-signal generation. Fig. 3. Time-velocity feature map generation.

mmVib [35] proposes a sub-signal generation method to achieve robust range estimation, which
uses a sliding window to separate the IF signal into different sub-signals according to different start-
ing frequencies. Although this method provides multiple observations (sub-signals) at the same
time, the bandwidth of each sub-signal becomes 1/M of the original IF signal (M is the number
of generated sub-signals). Because the range resolution of mmWave radar is proportional to the
bandwidth of the mmWave signal, this method results in range resolution reduction for the indi-
vidual sub-signal. Therefore, as shown in Figure 2, we design a sub-signal generation algorithm
that can use the full bandwidth information of the original IF signal and does not lead to a decrease
in range resolution. Specifically, for each IF signal, we generate multiple sub-signals by

si (n) = s
I F

(n)
W −1∑
j=0

δ[n − (jM + i − 1)], i = 1, 2, . . . ,M, (6)

where si (n) represents the i-th sub-signal, M is the number of sub-chirps, andW = �NS/M� is the
length of the sub-signal. These sub-IF signals can be considered to be transmitted at the same time.
Therefore, these sub-signals will be used for cross-referencing with each other. Compared with
the method in mmVib, our method obtains each sub-signal using the full bandwidth information
and therefore does not sacrifice range resolution.

3.2.3 Range-Doppler Map Generation. After obtaining multiple sub-signals, we need to extract
accurate hand movement information from them. We first apply the Fast Fourier Transform (i.e.,
range FFT) on each sub-signal to get the range information. As shown in Figure 3, since there are
other moving objects in front of the radar besides the user’s hand (e.g., the user’s torso and other
pedestrians or moving objects in the environment), the range FFT will generate multiple peaks
at different IF frequencies. We use the range bin where the first peak is located as the position of
the user’s hand since the user’s hand is the closest moving object to the radar. For the i-th chirp,
assuming that the range bin corresponding to the first peak of the k-th sub-signal after Range-FFT
is pik , then we can obtain the accuracy range bin pi by majority voting. Since the user’s hand
will occupy multiple range bins, we locate the hand position through a window. Assuming that
the window size is L, the range bin of the user’s hand in the i-th IF signal is [pi − L

2 ,pi +
L
2 ]. By

repeating the above operation for each IF signal, we can obtain the range of interest (red dashed
box in Figure 3) by the following expression:

H =
{
n ∈ N : pmin −

L

2
≤ n ≤ pmax +

L

2

}
, (7)
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Fig. 4. Feature extraction.

where pmin and pmax are the minimum and maximum values of all range bins in the frame, re-
spectively. Then, we set the values outside the region of interest to zero to exclude other dynamic
noises. We perform another FFT (i.e., Doppler FFT) on multiple IF signals in the slow-time dimen-
sion to obtain the velocity variation information during the signature process. Through the above
steps, we can get the RDMs that reflect the user’s signature execution process.

Figure 4(a) shows one RDM frame generated by the user during the signature execution process.
Our obtained RDM usually contains two velocity components of equal magnitude and opposite
direction. This is because the pen is divided into two parts, the upper part and the lower part,
with the grip point (red dot in Figure 4(b)) as the center during the user’s signature process. As
shown in Figure 4(b), the velocity direction of the upper part is opposite to the hand movements
direction, and the velocity direction of the lower part is the same as the hand movements direction.
The intensity of each component of the RDM depends on the radar cross-section (RCS). Since the
effective reflective area of the upper part of the pen is smaller than that of the hand, the intensity
generated by the pen movement is smaller than that of the hand movement.

3.2.4 Time-velocity Feature Transformation. During the signature execution process, the
change in distance from the user’s hand to the mmWave radar is extremely small, which can-
not be accurately sensed by the mmWave radar. Therefore, we use velocity change information
during the signature execution process as the signature verification feature.

To obtain the velocity change information during the signature execution process, we use the
following equation to transform the RDM of all frames into a 2D time-velocity feature map:

V (n,i ) =

∑NR

j=1[RDM (n,i, j ) · Bj ]

NR
, i ∈ [1,ND ], j ∈ [1,NR], (8)

where NR is the number of Range FFT, ND is the number of Doppler FFT, Bj is the range bin index,
and RDM (n,i, j ) represents the value corresponding to Doppler bin i and range bin j in the n-th
RDM frame. Figure 4(c) shows the time-velocity feature map we finally obtained, which reflects
the velocity variation of the user’s hand and pen during the signature execution process.

3.3 Data Augmentation

To improve the performance of the base model using limited data, we propose three data augmen-
tation methods based on the variation characters of the time-velocity feature maps obtained from
the mmWave signal during the signature execution process. The basic idea of data augmentation
techniques is to synthesize new data by transforming existing labeled training samples so that
the neural network model can learn a broader range of intra-class variations. By observing the
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Fig. 5. Feature maps obtained by different types of pens.

generated time-velocity feature maps, we find three common types of variations. The first type is
the intensity variation of a specific component in the feature map due to different pen types and
pen grip positions. The second type is the variation of reaction time and the signing speed. The
third type is the magnitude variation of the user’s hand movements when signing. Based on these
observations, we design three data augmentation methods that can be efficiently implemented to
augment the training set.

3.3.1 Augmenting Data with Velocity Transformation. As mentioned in Section 3.2.3, the pen’s
upper part generates a velocity component in the opposite direction of the hand movement during
the signing process, whose intensity depends on the RCS of the pen’s upper part. During the
signature execution process, the RCS varies depending on the type of pen and the grip position,
which results in different time-velocity feature maps obtained by the same user when signing
with different types of pens. To investigate the impact of the pen’s RCS, we use pens with different
lengths to sign on the same surface. Specifically, we use a longer pen (14 cm) and a shorter pen
(7 cm) to generate the corresponding time-velocity feature maps. As shown in Figure 5(a), due to
the large RCS of the longer pen’s upper part, the mmWave radar senses two velocity components
with opposite directions. Therefore, two velocity components with opposite directions exist in
the same frame of the final generated time-velocity feature map. However, the RCS of the shorter
pen’s upper part is very small (or equal to zero), and the mmWave radar cannot sense the velocity
component caused by the pen’s upper part. Therefore, only the velocity component induced by
the hand movements exists in the obtained time-velocity feature map as shown in Figure 5(b).
With the above analysis, we augment the data by changing the intensity of the pen movement
velocity component. Specifically, for each RDM in Section 3.2.3, we divide it into two parts: the
positive velocity part and the negative velocity part. We keep the velocity part generated by the
hand movements fixed and multiply the other velocity part by a decay factor α within [0, 1].

3.3.2 Augmenting Data with Time Transformation. We find that the following two factors have
a significant impact on the extracted feature maps. (1) Reaction time. The user’s reaction time
when signing is inconsistent; thus, the start time of valid signature information may have different
offsets. These temporal offsets can be achieved by translating the feature maps in the horizontal
direction. Specifically, for the obtained time-velocity feature matrix, we first determine the signa-
ture start time t1 and the end time t2 by thresholding and then cyclically shift the elements in the
time-velocity feature matrix by P elements, where P is less than the smaller of t1 and t2 to prevent
the temporal features of the signature from being interrupted. (2) Signing time. The different
signing speeds of the user can result in different signature execution times. These two factors can
be changed by transforming the time-velocity feature map in the time-dimension for data augmen-
tation. The difference in signature execution time can be achieved by stretching or compressing
the original time-velocity feature. Specifically, we first compress or stretch the data between t1 and

ACM Transactions on Sensor Networks, Vol. 20, No. 4, Article 89. Publication date: May 2024.



89:12 M. Han et al.

Fig. 6. Data augmentation. Based on the effect of different velocity, time, and amplitude variations on the

mmWave signals during the signature execution process, we propose three data augmentation methods to

improve the performance of the base model training.

t2 by downsampling or interpolating to β times the original data, and then interpolate or down-
sample the data outside the range of [t1, t2] to make sure that the length of the augmented data is
the same as the original data, where β is the compress/stretch factor within [−0.7, 1.3].

3.3.3 Augmenting Data with Magnitude Transformation. We find that the intensity of the time-
velocity feature maps generated during the user’s signature changes due to the magnitude of the
user’s hand movements. Generally, the greater the magnitude of the user’s signature movements,
the darker the color of the feature map and vice versa. Therefore, we simulate the effect of the
user’s different hand movement magnitudes during the signature execution process by changing
the color range of the time-velocity feature map. Specifically, we first divide the entire feature map
into eight segments equally by frame (ten frames per segment). Then, four of these segments are
randomly selected for intensity transformation. For the selected segment, suppose that the color
range is [a,b]; we can change the intensity of the feature map by adjusting the color range to
[a, (1 + γ )b], where γ is the transformation factor within [−0.3, 0.3].

Figure 6 shows the time-velocity feature maps obtained using the above data augmentation
methods. Note that the label of augmented data is the same as the original data, and each method
has a parameter to adjust the level of data augmentation. All of these methods can be easily applied
in the meta-training phase and generalized in the training dataset to accommodate the negative
impact of signature inconsistencies and user-specific problems. The performances of the data aug-
mentation will be evaluated in Section 4.4.

3.4 Signature Verification

After obtaining the time-velocity feature map of the signing process, we need to verify the au-
thenticity of the signature. The time-velocity feature map is essentially a sequence of data, as
it represents temporal information such as the velocity and the magnitude changes of the hand
movements over time during the signature execution process. In mmSign, we design a transformer-
based verification model to derive a high-level representation of the input time-velocity feature
map and obtain the accurate signature verification result.

The architecture of our verification model is illustrated in Figure 7. The obtained time-velocity
feature map is first transformed into multiple linear vectors with time information by patch embed-
ding and time embedding. Then, these linear vectors are used as the input of the transformer en-
coder to obtain long-term dependencies among all the time patches. The multi-head self-attention
(MSA) [62] is leveraged to serve as the primary primitive of the encoder, which reduces the depen-
dence on external information and is superior in capturing the internal correlation of sequential
data or features. After processing with the transformer encoder, we obtain a high-level represen-
tation of the input time-velocity feature map. Finally, we use a multi-layer perceptron (MLP) to
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Fig. 7. Verification model. The obtained time-velocity feature map is first partitioned into multiple patches

and appended with temporal information in the feature embedding block. Then, the time patches are fed into

the transformer encoder to obtain a high-level representation. Finally, the verification result can be obtained

by the MLP head.

perform binary classification and determine whether the input signature is generated by a legiti-
mate user. We present the details of each module below.

3.4.1 Feature Embedding. The input time-velocity feature map first needs to be converted
by the feature-embedding block into time patches, which are served as the input of the trans-
former encoder. Specifically, the feature-embedding block contains two layers: the patch embed-
ding layer and the time embedding layer. The input of our model is the time-velocity feature map
m ∈ RH×W ×C , where H , W , C are the height, width, and channel number of the time-velocity
feature map, respectively. As mentioned above, the time-velocity feature map is essentially a tem-
poral sequence and does not contain spatial information compared with the image input of the tra-
ditional vision transformer [18]. Therefore, we only process in the time dimension (i.e., width) and

divide it into time patchesmp ∈ RN×(H ·T ·C ) by patch-embedding layer, whereT is the width (time
duration) of each patch and N =W /T is the number of patches. We then flatten the time patches

and map them to D dimensions using a linear projection with a parameter matrixW ∈ R(H ·T ·C )×D .
A special classification token mcls ∈ RD is attached to the beginning of embedded time patches
to represent the meaning of the entire sequence [14]. The attention mechanism processes all the
input patches in parallel, which means that the temporal information in the original feature map
is lost. Therefore, a time-embedding layer is used to add temporal information for each time patch.
Specifically, we add Et = (t0, t1, t2, . . . , tN ) to each patch to retain the absolute temporal infor-
mation, where t i ∈ RD . In summary, the flattened time patches after the feature embedding block
can be expressed as

R =
[
mcls ;m1

pW ;m2
pW ; . . . ;mN

p W
]
+ Et = [r 0;r 1; . . . ;rN ], (9)

where r i ∈ RD is the i-th time patch.

3.4.2 Transformer Encoder. The flattened time patches are then fed into a transformer encoder,
which consists of alternating layers of MSA and MLP, with the layer normalization [5] connected
by residual structures between each layer.

Multi-head self-attention block. The structure of the MSA block is shown in Figure 8. Multi-
head attention extends the model’s ability to focus on the different time duration of the input
time-velocity feature map by jointly attending information from different representation sub-
spaces. We apply multi-head attention withh heads, where the self-attention function is calculated
h times. Given the flattened time patchesR obtained by feature embedding, the trainable query ma-
trixW Q ∈ RD×D , key matrixW K ∈ RD×D , and value matrixW V ∈ RD×D are first multiplied with
the time patchesR to obtain the query matrixQ , key matrixK , and value matrixV . Then, the query
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Fig. 8. Multi-head self-attention (MSA). Fig. 9. Multi-layer perceptron (MLP).

matrix, key matrix, and value matrix are linearly projected h times with different, learned linear

projectionsW Q
i ,W K

i , andW V
i ∈ RD×D

h (1 ≤ i ≤ h) to generate linear projected queries, keys, and
values:

Q i = QW
Q
i , K i = KW K

i , V i = VW
V
i . (10)

Next, the attention of each head is calculated for each group of Q,K ,V by the following equation:

headi = Attention(Q i ,K i ,V i ) = softmax

(
Q iK

	
i√

D/h

)
V i . (11)

By concatenating the output sequence headi of each head, we can obtain the final output of the
multi-head self-attention:

MultiHead(Q,K ,V ) = Concat(head1,head2, . . . ,headh )W O , (12)

whereW O ∈ RD×D is the linear projection matrix.
Multi-layer perceptron block. The output of the MSA block is fed to the MLP block after

layer normalization. The MLP block is shown in Figure 9, which contains two fully connected (FC)
layers, two dropout layers, and one GELU layer. The output of MLP is residually connected with
the output of the MSA to obtain the transformer encoder output.

3.4.3 Model Outputs. After the transformer encoder, a high-level presentationZ ∈ R(N+1)×D of
the input time-velocity feature map is inferred. Note that we append a special classification token
mcls to the embedded time patches in the feature embedding block, which is used to represent
the meaning of the entire input sequence (see Section 3.4.1). Therefore, we use the output of the
transformer encoder z0 corresponding to the classification token as the input of the MLP head.
The MLP head contains a fully connected layer to get the final verification result.

The transformer architecture presents a novel self-attention mechanism, which enhances its
ability to capture global temporal features in the context of signature processing. Despite the in-
put data being presented in image format, it inherently contains temporal information related
to variations in the user’s signature velocity and the RCS intensity caused by different signature
postures at different time periods. The self-attention mechanism adeptly captures the internal re-
lationships within this information, enabling the transformer structure to extract comprehensive
time-dependent sequence features during the signature execution process. In addition, instead of
directly adopting the patch embedding and position embedding methods in the traditional vision
transformer ViT [18], we design a new feature-embedding scheme for the unique temporal nature
of the mmWave feature maps we obtain, so as not to destroy the complete timing information
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Fig. 10. Task generation. We propose a task generation strategy based on forged signature types, which

utilizes random forged signatures and genuine signatures to form random tasks, skilled forged signatures

and genuine signatures to form imitation tasks, and imitative forged signatures and genuine signatures to

form imitative tasks, thereby improving the base model’s ability to resist forgeries when new users adapt.

of particular time periods, as described in Section 3.4.1. Finally, using multiple heads ensures that
the model can extract user-specific features from several different subspaces. These design choices
ensure that the verification model extracts features with high accuracy and robustness.

3.5 Meta-learning-Based New User Adaptation

Although the proposed verification model can achieve good verification performance, like most
existing handwritten signature verification schemes, it requires extensive signature collection dur-
ing the new user registration phase, which is unrealistic and user-unfriendly. Therefore, how to
reduce user signature collection efforts in the registration phase while maintaining strong system
performance is an urgent problem to be solved. In mmSign, to reduce the data collection efforts,
a meta-learning strategy is introduced to enable new users to quickly adapt to the verification
system using only a few training samples.

3.5.1 Problem Formulation. Meta-learning [28] adopts the “learn to learn” concept and uses
prior knowledge to generalize to new tasks with limited training samples rapidly. In mmSign, we
formulate the problem as follows. We consider the signature verification task for each user as
a meta-learning task. We have a source dataset Dtr ain , which is leveraged to generate the task
set T . Each task Ti ∈ T contains a support set STi

and a query set QTi
, which do not intersect

(STi
∩ QTi

= ∅). Since each task Ti contains two types of signatures (i.e., genuine signatures and
forged signatures), our problem is a 2-way K-shot problem, where K is the number of genuine
or forged signatures in the support set and query set of each task. Therefore, the objective of our
meta-learning scheme is to use the task set T generated by the source dataset Dtr ain to train the
base model to learn how to quickly adapt to the signature verification tasks for new users using
only K labeled samples.

3.5.2 Task Generation. Existing meta-learning methods use random sampling from the large
available dataset to generate multiple tasks for based model training [21, 58], which is inefficient
in the field of signature verification, where the signature data is very limited. Therefore, how to
effectively leverage the limited signature data to generate meta-learning tasks applicable to our
signature verification problem is a unique challenge.

In the sector of signature verification, two types of traditional forgery attacks exist: random
forgery attacks, where the attacker does not know the user’s signature and uses a random signature
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ALGORITHM 2: Meta-training Algorithm

Input :Dtr ain : source dataset for meta-training

α , β : learning rates

Output :θ : meta-learned weights of the base model

1 Randomly initialize θ

2 while not done do

3 Generate three kinds of tasks using Dtr ain to build the task set T � See Section 3.5.2

4 foreach Ti ∈ T do

5 STi
← K support samples from Ti

6 QTi
← K query samples from Ti � STi

∩QTi
= ∅

7 Evaluate ∇θLTi
( fθ ) with STi

8 θ ′
Ti
← θ − α∇θLTi

( fθ ) � Calculate task-specific parameters

9 Evaluate ∇θLTi
( fθ ′ ) with QTi

10 end

11 Update θ ← θ − β∇θ
∑

Ti ∈T
LTi

( fθ ′ ) � Meta-update

12 end

instead; and skilled forgery attacks, where the attacker has access to the user’s signature and
performs an imitation [25, 31, 33]. In addition to traditional forgery attacks, our mmWave online
signature verification system can be subject to a new type of attack, which we call an imitative
forgery attack. In imitative forgery attacks, the attacker can obtain information about the user’s
signature execution process and tries to fool the system by imitating the user’s signing process.
Considering these three different types of forgery attacks, we design a task generation scheme
to improve the resistance of the verification model to forgeries when new users adapt, instead
of randomly generating tasks using the source dataset. Specifically, as shown in Figure 10, we
generate three different types of tasks for each user u: random tasks T R

u , which consist of the
user’s genuine data Du and other user’s data D − Du (i.e., random forgery signatures); skilled
tasks T S

u , which consist of the user’s genuine data Du and skilled data D ′u (i.e., skilled forgery
signatures); and imitative tasksT I

u , which consist of the user’s genuine data Du and imitative data
D ′′u (i.e., imitative forgery signatures). It is worth noting that since each user (or task) contains many
genuine signatures and forgery signatures, each user can generate multiple random tasks, skilled
tasks, and imitative tasks in the meta-training phase. These three task sets form our final task set
T . The effectiveness of our proposed task generation scheme will be evaluated in Section 4.5.

3.5.3 Meta-training. With the generated tasks in Section 3.5.2, we train the base model via
meta-learning. Specifically, mmSign employs model-agnostic meta-learning (MAML) [21] to up-
date the base model parameters. MAML can be applied to any gradient descent-based deep neural
network with only a few gradient steps needed for model parameters updating. MAML assumes
the existence of initial parameters that can be transferred to new tasks with only a few shots, and
it performs initial parameter training with the goal of making the trained parameters adaptive to
changes in different tasks.

For the data in each task Ti , we divide it into a support set STi
and a query set QTi

, each of
which has K samples (K-shot). The base model training process is illustrated in Algorithm 2. For
each task, we evaluate ∇θLTi

( fθ ) with K samples in STi
(Line 7). Then, the adapted task-specific

parameters can be calculated as

θ ′Ti
= θ − α∇θLTi

( fθ ), (13)
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which is called the inner loop update, where ∇θLTi
( fθ ) is the cross-entropy loss in the task and is

defined as

LTi
( fθ ) =

∑
(x j ,yj )∈STi

yj log fθ (x j ) + (1 − yj ) log fθ (1 − x j ). (14)

Then, the meta-objective function is defined as

arg min
θ

∑
Ti ∈T

LTi
( fθ ′ ), (15)

which is designed to find parameters θ that can minimize the sum of all the task losses, and each
task loss is evaluated by QTi

(Line 9). Finally, stochastic gradient descent (SGD) is leveraged to
minimize the meta-objective function and obtains the parameters θ :

θ ← θ − β∇θ

∑
Ti ∈T

LTi
( fθ ′ ), (16)

which is called the outer loop update. The base model with favorable initial parameters θ can be
obtained after this process.

3.5.4 Model Adaptation. After the base model obtained by the above meta-training process,
we fine-tune the base model using the new user’s data, which contains only K-shot. The model
adaptation process can be expressed as

θu = θ − α∇θLu ( fθ ), (17)

where θu is the parameters of the new user’s fine-tuned model.

4 EVALUATION

In this section, we first introduce the experimental setup and the data collection of mmSign. Then,
we conduct a thorough experiment to demonstrate the performance of mmSign and its ability to
withstand forgery attacks. Finally, we deploy mmSign on a Raspberry Pi to test its energy and time
consumption for signature verification.

4.1 Experimental Setup

4.1.1 Implementation. As shown in Figure 11, we use a commercial FMCW radar AWR16421

and real-time data-capture adapter DCA1000EVM2 for raw data collection. The default frame
rate of mmWave radar is 10 FPS, and the number of chirp loops is 255. In addition, to verify the
robustness of mmSign, we conduct experiments using four pens with different materials and
lengths, and three different signature surfaces, as will be described in Section 4.8. The proposed
verification model is trained offline on a desktop PC with an Intel i7-10700 CPU, 64 GB RAM, and
RTX 3080 GPU. Keras 2.6.0 [12] with TensorFlow 2.6.0 [1] backend is used for model construction
and training.

To evaluate the performance of mmSign, we consider the verification accuracy, which is widely
adopted in the previous handwritten signature verification systems [16, 31]. Verification accuracy
indicates the fraction of correctly classified signatures to the total number of signatures. A higher
verification accuracy indicates that the system has better usability to correctly distinguish between
genuine signatures and forged signatures. In addition, we report the false rejection rate (FRR) of
our system, which represents the percentage of authentic signatures that are erroneously classified
as forgeries by mmSign. A lower FRR signifies the system’s improved capacity to correctly identify

1https://www.ti.com/product/AWR1642.
2https://www.ti.com/tool/DCA1000EVM.
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Fig. 11. Experimental devices. Four types of signature pens and three different signature surfaces are used

to evaluate our system.

authentic signatures and to decrease the number of false rejections, which is crucial for ensuring
a seamless and dependable user experience.

4.1.2 Attack Scenarios. We consider three types of forgery attacks performed by attackers: ran-
dom forgery attacks, skilled forgery attacks, and imitative forgery attacks.

• Random forgery attacks. The attacker does not know any information about the user, and
the attacker tries to use a random signature to fool the verification system.
• Skilled forgery attacks. The attacker knows the user’s signature, but not the user’s signature

execution process, and the attacker tries to fool the verification system by imitating the
user’s signature.
• Imitative forgery attacks. The attacker observes the whole signature execution process

when the user performs a signature through secretly filmed videos or shoulder-surfing. The
attacker tries to fool the verification system by imitating the user’s signature execution
process.

The first two attacks are common attacks in the signature verification sector, whereas the third
attack is specifically against our mmWave signature verification system. We will evaluate these
three attacks in Section 4.9.

4.2 Data Collection

We recruited 30 volunteers, 18 males and 12 females, of different ages and hand sizes for data col-
lection.3 All volunteers were informed about how mmSign works, and each volunteer performed
five signatures to familiarize oneself with mmSign before the official data collection. Before con-
ducting the data collection, the volunteers signed the consent forms that clearly stated the purpose,
procedure, and data usage of the study. We conducted experiments using an Apple pencil (Pen 1 in
Table 2) and an iPad, with the signature box (4 cm by 2 cm) located directly in front of the mmWave
radar at a distance of 30 cm in the office. The signatures we collected are in English, and we also
evaluate the impact of different signature languages on our system in Section 4.7. The data collec-
tion is divided into the following two parts. (1) Genuine signatures collection: Each volunteer
was required to provide 50 signature samples as genuine signatures. During the user’s signature
execution process, we used video to record the process for imitative forged signature collection.
Therefore, we have 50 genuine signatures per volunteer. (2) Forged signatures collection: For

3Ethical approval has been granted by the corresponding organization (No. H002254).
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each target volunteer, we randomly selected ten volunteers from the remaining 29 volunteers for
the forged signature collection. As mentioned in Section 4.1.2, there are three types of forged sig-
natures, which are random forgery, skilled forgery, and imitative forgery. We randomly chose five
genuine signatures from each volunteer as random forgeries. For skilled forgeries, we asked each
volunteer to imitate the signature of the target user five times. Finally, we asked the ten volunteers
to watch the target user’s signature video and imitate the signature execution process of the target
user five times as imitative forgeries. As a result, we have 50 random forged signatures, 50 skilled
forged signatures, and 50 imitative forged signatures for each target user.

The above raw data is augmented by our three data augmentation methods introduced in
Section 3.3 to obtain our source dataset Dtr ain . Specifically, for each data augmentation method,
we augment the original data twice using two different parameters. Therefore, for each volunteer,
we have 50 × 7 = 350 genuine signatures, 50 × 7 = 350 random forged signatures, 50 × 7 = 350
skilled forged signatures, and 50 × 7 = 350 imitative forged signatures. These data will be used as
the source dataset to generate tasks for meta-learning using our proposed task generation method
in Section 3.5.2.

4.3 Overall Performance

We use the collected dataset to evaluate the performance of mmSign. The leave-one-volunteer-out
training method is leveraged to evaluate the performance of mmSign. Specifically, we iteratively
select one volunteer as the newly registered user and use the remaining 29 volunteers’ data as the
source data to train the base model. We report the average verification accuracy of all volunteers.
Thus, we can assess whether our system is user-independent, that is, whether it works for newly
registered users. Meanwhile, to evaluate the performance of our meta-learning framework, we
compare mmSign with the transfer learning. For transfer learning, we train the base model with
all data from 29 volunteers and fine-tune the base model with the new user’s data. Since the random
forged signatures in our dataset are composed of the genuine signatures of other users, we only use
skilled forgeries as forged signatures during the base model training phase to avoid label conflicts
in transfer learning.

The comparative performance of mmSign and transfer learning is depicted in Figure 12. When
implementing transfer learning, the verification accuracy in scenarios of one-shot, three-shot, five-
shot, and ten-shot stands at 59.49%, 65.44%, 72.79%, and 82.61%, correspondingly, whereas mmSign
attains a verification accuracy of 84.07%, 87.31%, 91.12%, and 96.54% in the one-shot, three-shot,
five-shot, and ten-shot settings, respectively. Additionally, as evidenced in Figure 12(b), the FRR
of transfer learning is higher than that of mmSign by 25.87%, 23.20%, 20.88%, and 11.30% for the
one-shot, three-shot, five-shot, and ten-shot scenarios, respectively. This disparity in performance
can be attributed to the employment of a novel meta-learning approach by mmSign, which facili-
tates the acquisition of knowledge from multiple tasks within the task space, in contrast to transfer
learning that only optimizes a single task. Consequently, mmSign exhibits a more efficient adap-
tation to new users with limited data.

4.4 Impact of Data Augmentation

In this experiment, we evaluate whether the proposed three data augmentation methods can en-
hance the performance of the base model during the meta-training process and thus improve the
verification accuracy of newly registered users. We consider the following five different scenarios:
(1) without data augmentation (w/o), (2) data augmentation with velocity transformation (w/v),
(3) data augmentation with time transformation (w/t), (4) data augmentation with magnitude trans-
formation (w/m), and (5) data augmentation with the above three methods (w/a).
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Fig. 12. Overall performance.

Fig. 13. Impact of data augmentation. Fig. 14. Impact of task generation.

The evaluation results are shown in Figure 13. When no data augmentation strategy (i.e., w/o) is
introduced, the accuracy of one-shot, three-shot, five-shot, and ten-shot is 74.33%, 76.42%, 80.63%,
and 83.61%, respectively. The experimental results show that using only one data augmentation
strategy (i.e., w/v, w/t, and w/m) or all three data augmentation strategies (i.e., w/a) can signifi-
cantly enhance the performance of our system. The highest accuracy is achieved when all three
data augmentation strategies are used simultaneously because the augmented source dataset is
larger, allowing better coverage of different real-world scenarios and thus improving the learning
ability of the base model.

4.5 Impact of Task Generation Method

We evaluate the effectiveness of the proposed task generation approach described in Section 3.5.2.
We use random task generation from the source dataset as the baseline, which has been widely used
in recent meta-learning methods [21, 58]. Specifically, the data in each task is selected randomly
from the source data, without considering the type of forged signature. As shown in Figure 14,
after using the proposed task generation scheme, the verification accuracy of one-shot, three-shot,
five-shot, and ten-shot is improved from 71.43%, 76.71%, 78.56%, and 85.98% to 84.07%, 87.31%,
91.12%, and 96.54%, respectively. In comparison with random task generation, dividing the tasks
into random tasks, skilled tasks, and imitative tasks can better improve the base model’s ability to
verify different kinds of forged signatures.

4.6 Impact of Radar Configuration Parameters

In this subsection, we evaluated the impact of different radar configuration parameters on the
experimental results.
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Fig. 15. Impact of radar configuration parameters.

Frame rate. We evaluate the impact of the mmWave radar frame rate. The frame rate of
mmWave radar is set to 5 FPS, 10 FPS, and 20 FPS. As shown in Figure 15(a), when the mmWave
radar frame rate changes from 5 FPS to 20 FPS, the verification accuracy under one-shot, three-
shot, five-shot, and ten-shot settings increases from 73.35%, 75.45%, 77.24%, and 81.23% to 85.62%,
88.32%, 91.02%, and 96.11%, respectively. Higher frame rates provide more detailed samples of the
signature execution process, but also require more computational resources for data processing.
Since signing is a relatively fast process, 5 FPS is not enough to get the complete dynamic infor-
mation, which results in the worst verification performance. Experimental results show that the
difference between 20 FPS and 10 FPS in the ten-shot case is less than 0.5%, which is relatively
small. Therefore, 10 FPS is sufficient to accurately capture the velocity change when signing.

Chirp loops. The impact of mmWave radar velocity resolution on the system is evaluated in this
experiment. The velocity resolution is reflected in the number of chirp loops in each radar frame.
As shown in Figure 15(b), with the increase of chirp loops from 64 to 128, the accuracy in the one-
shot, three-shot, five-shot, and ten-shot settings increases from 79.64%, 83.23%, 85.63%, and 88.62%
to 82.23%, 85.03%, 87.12%, and 94.31%, respectively. With the increase of chirp loops from 128 to
255, the accuracy in the above four settings increases from 82.23%, 85.03%, 87.12%, and 94.31% to
84.07%, 87.31%, 91.12%, and 96.54%, respectively. The improvement in accuracy can be explained
as follows. The mmWave radar velocity resolution can be expressed as Δv = λ/(2MTc ), where λ is
the wavelength, M is the number of chirp loops, andTc is the chirp period. When the chirp period
Tc is fixed, the velocity resolution increases as the number of chirp loops increases, which means
a better ability to distinguish velocity changes during the signature execution process.

4.7 Adaptability to Different Signature Types

Since the handwritten signatures of different users vary in language and complexity, in this section,
we evaluate the adaptability of our system to different types of signatures.

Signature language. To assess the adaptability of our system to different language types, we
test the adaptability of our system to Chinese signatures based on the base model trained by the
source dataset. We recruit five additional volunteers and collect their Chinese signature data fol-
lowing the steps in Section 4.2. The average experimental results of the five volunteers are shown
in Figure 16(a). The verification accuracy of Chinese signatures in one-shot, three-shot, five-shot,
and ten-shot cases are 80.30%, 83.17%, 86.95%, and 91.68%, respectively, which is slightly lower than
the verification accuracy of English signatures. The velocity-time feature map responds to varia-
tions in radial velocity during the signing, but not tangential velocity; Chinese signatures contain
more lateral (tangential) strokes compared with English signatures, which results in less informa-
tion obtained by mmWave radar when performing Chinese signatures than English signatures.
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Fig. 16. Adaptability to different signature types.

Signature complexity. We evaluate the adaptability of our system to signatures of different
complexity. Based on the number of letters in the name, we divide all samples into three categories,
which are simple (less than 7 letters), normal (7–11 letters), and complex (more than 11 letters). For
each category, we randomly selected three volunteers whose signatures met the criteria for ver-
ification. The verification results are shown in Figure 16(b). As we can see, when the signature
complexity is increased from simple to complex, the verification accuracy increases by 1.4%, 2.7%,
3.6%, and 3.2% in the one-shot, three-shot, five-shot, and ten-shot cases, respectively. The verifica-
tion accuracy of our system is higher in the case of high signature complexity because signatures
with high complexity contain much richer dynamic information.

4.8 Adaptability to Different Scenarios

Users may perform signature verification in different scenarios. Thus, in this section, we evaluate
the adaptability of mmSign to different real-world scenarios after new user registration is com-
pleted, which include different signature sizes, different relative positions of radar and signature
box, different deployment environments, different signature pens, and different signature surfaces.
Note that the base model is trained using the source dataset collected in Section 4.2, with the de-
fault scenario of size 2, position 0, office, pen 1, and iPad. We collect data from the other five new
users in different scenarios and fine-tune the base model with the data from the default scenario.
Then, the fine-tuned model is evaluated with data from other scenarios.

Signature size. Different signature scenarios may have different requirements for the size of
the signature. Thus, we verify the adaptability of mmSign to different signature sizes in this exper-
iment. The size of the signature box is divided into three types: size 1 (2 cm by 1 cm), size 2 (4 cm
by 2 cm), and size 3 (8 cm by 4 cm). We use the signatures of size 2 for new user training, and then
use the signatures of size 1 or size 3 for testing. The average verification accuracy corresponding
to the three different sizes of the five new users is shown in Figure 18(a). Under size 1 and size
3, the verification accuracy is not significantly different from the default size (i.e., size 2), which
demonstrates the robustness of our system to signature size.

Relative positions of radar and signature box. The adaptability of the system to the relative
position of mmWave radar and the signature box is evaluated. As shown in Figure 17, we move the
signature box from its default position (P0) to the four other positions (P1–P4), and the horizontal
and vertical distance between the centers of two adjacent signature boxes is 15 cm. The signatures
used for fine-tuning the base model are collected at P0, whereas the signatures used to test the fine-
tuned model are collected at the other positions. The average results of the five users at different
positions are shown in Figure 18(b). As we can see, the verification accuracy at P3 and P4 remains
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Fig. 17. Signature box positions.

Table 2. Different Types of Pens for Signature

Length (cm) Diameter (cm) Material

Pen 1 17.6 0.9 Plastic

Pen 2 14.0 0.8 Metal

Pen 3 14.0 0.7 Wood

Pen 4 7.0 0.7 Wood

similar to that at P0, which is due to the fact that the mmWave radar can accurately sense the radial
velocity changes of the hand movements independent of the radial distance. Despite exhibiting
the poorest performance at P1 and P2, mmSign demonstrates a mean verification accuracy
decrease of less than 1.5% in comparison with P0. This phenomenon can be attributed to the fact
that the mmWave radar is capable of detecting a significantly reduced radial velocity component
despite the signature’s location being positioned obliquely relative to the radar’s direct line of
sight. Thus, the radar is still able to capture the radial component associated with the signature’s
velocity. Additionally, as discussed in Section 3.2.3, our system obtains a feature map that reflects
both the velocity variations of the user’s hand and the pen’s upper part, providing richer infor-
mation for signature verification compared with existing acoustic-based solutions. Consequently,
mmSign is more robust to changes in signing position than acoustic-based solutions.

Environments. Since signature verification may occur in various environments, we conduct
experiments in different environments to verify the robustness of mmSign. We chose the office,
cafe, and school hall for this experiment. There are people walking around during the data col-
lection. The signatures collected in the cafe and school hall are used to test the fine-tuned model
that is trained using data collected in the office. As shown in Figure 18(c), the verification accu-
racy in the cafe and school hall remains at a similar level compared with the accuracy in the office,
where signatures from the same environment are used in both the training and testing phases. This
is because our signal processing algorithms filter out other environmental interference, ensuring
that the obtained time-velocity feature map contains only the information of the user’s signature
execution process.

Signature pens. As described in Section 3.2.3, the obtained time-velocity feature map contains
the velocity component due to the opposite direction of the end part of the signature pen. In
addition, signature pens of different materials may also affect the verification results due to their
different reflection intensities on the mmWave radar. To verify the impact of different signature
pens on our system, we choose four signature pens with various lengths and materials for our
experiments, as shown in Table 2. The signatures obtained with Pen 1 are leveraged to fine-tune
the base model, and the fine-tuned model is tested with signatures obtained using the other pens.
Note that all signatures are performed on A4 paper on a wooden desktop, and since Pen 1 is an
electronic pen, the process does not actually produce a signature image. The experimental results
are shown in Figure 18(d), from which we observe that the accuracy of using a longer pen (i.e.,
Pen 2 and Pen 3) for signature is slightly higher than that of a shorter pen (i.e., Pen 4). This is
because the time-velocity feature map obtained by using a longer pen contains more information,
as introduced in Section 3.3.1. The accuracy of using the metal pen (i.e., Pen 2) for signature
is slightly higher than that of using the wooden pen (i.e., Pen 3) due to the metal pen’s larger
RCS.
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Fig. 18. Adaptability to different scenarios.

Signature surfaces. We evaluate the performance of our system on different signature surfaces,
which simulates the actual situation of signing on different materials (e.g., paper, tablet). We choose
three different surfaces: an iPad (default), A4 paper on a wooden desktop, and A4 paper on a plastic
desktop. We perform three tests using Pen 1, which is an electronic pen and does not produce
signature images. We train the model using signatures collected from the iPad and test it with
signatures collected on other surfaces. The experimental results are shown in Figure 18(e). As we
can see, the signature surface has a minimal impact on the verification accuracy of mmSign due to
the system’s reliance on the hand movements of the signer during the signature execution process,
which is independent of the signature surface.

Random scenarios. In order to assess the adaptability of our system in an entirely unfamil-
iar scenario characterized by varying signature sizes, relative signature positions, signature pen
types, and signature surface types, a random selection of scenarios is employed for experimental
purposes. Specifically, three scenarios are identified and designated as follows: Scenario 1 with size
1, P4, cafe, pen 2, and plastic desktop; Scenario 2 with size 3, P1, hall, pen 4, and wooden desktop;
and Scenario 3 with size 1, P3, hall, pen 3, and wooden desktop. The evaluation results are shown
in Figure 18(f). Our evaluation indicates that simultaneous changes to multiple parameters have
a notable impact on the accuracy of signature verification, in contrast to changes to a single pa-
rameter. However, even in an entirely unfamiliar scenario, the average accuracies of mmSign in
one-shot, three-shot, five-shot, and ten-shot cases are 79.56%, 82.91%, 87.62%, and 92.21%, respec-
tively. This outcome is commendable given the relatively minor time overheads (i.e., less than one
and a half minutes for ten signatures) required for new user registration.

4.9 Security Analysis

In this section, we assess the resistance of mmSign to the three forgery attacks mentioned in
Section 4.1.2.
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Fig. 19. Security analysis.

Table 3. System Overhead

Stage

Performance
Computation time (s) Energy consumption (mJ)

Static noise elimination 0.563 4.075

Sub-signal Generation 0.821 5.913

RDM generation 2.135 15.623

Time-velocity feature map generation 1.507 11.038

Signature verification 0.990 7.810

Total 6.016 44.459

We recruit ten volunteers as newly registered legitimate users and five volunteers as attackers
to conduct forgery attacks. Each legitimate user performs ten signatures as genuine signatures,
and the signing process is recorded on video for the attackers to imitate. For each target user, we
randomly select two other users from the group of nine remaining users and gather three types
of forged signatures from them, as described in Section 4.2. Therefore, we have ten samples for
each type of forged signature. These signatures are used for base model fine-tuning. During the
evaluation phase, the five attackers forge three different types of signatures for each legitimate
user, with ten instances of each type of forgery. We report the false accept rate (FAR) of mmSign
as a metric to assess the effectiveness of our system in resisting three kinds of forgery attacks.

As shown in Figure 19, for one-shot, three-shot, five-shot, and ten-shot cases, the FARs of mm-
Sign are 16.0%, 12.2%, 8.2%, and 2.6% for random forgeries; 16.6%, 12.6%, 9.2%, and 4.7% for skilled
forgeries; and 18.6%, 15.8%, 10.8%, and 5.8% for imitative forgeries, respectively. This is because
the attackers can only imitate coarse-grained information such as hand movements and stroke
order, and cannot imitate fine-grained information such as hand size, stroke interval, and signing
velocity, which are also reflected in the obtained feature map and extracted as high-level features
by the designed verification model as the basis for verification. To sum up, mmSign is resilient to
common forgery attacks.

4.10 System Overhead

We train the model offline on the desktop PC and deploy it to the Raspberry Pi 4B to test the system
overhead. We use a power monitor to evaluate the verification time and the energy consumption
required for mmSign to verify a signature. The computation time and energy consumption
of different stages are presented in Table 3. We can see the static noise elimination time, the
sub-signal generation time, the RDM generation time, the time-velocity feature map generation
time, and the verification time are 0.563 s, 0.821 s, 2.135 s, 1.507 s, and 0.990 s, respectively. Notably,

ACM Transactions on Sensor Networks, Vol. 20, No. 4, Article 89. Publication date: May 2024.



89:26 M. Han et al.

the generation of RDMs necessitates performing multiple matrix FFT operations on all IF signals
for every radar frame, which is the primary contributor to time overhead. Additionally, since
the verification model requires image data as input, converting all RDM frames into a single
time-velocity feature map and saving it as an image also incurs a relatively long processing time.
The longer processing time is also the main reason for the larger energy consumption. However,
the entire handwritten signature verification process is accomplished in approximately 6 s after
receiving the raw data, and the total energy consumption is less than 45 mJ, demonstrating the
efficiency and speed of mmSign.

5 USER STUDY

5.1 Recruitment and Design

To investigate the usability of mmSign, we further recruit 90 subjects (48 females and 42 males
whose ages range from 15 to 59) to participate in the user study. It should be noted that these in-
dividuals are not involved in the previous studies. These individuals are not aware of any method
we develop to prevent bias. Instead, they are told to evaluate the usability of mmSign by answer-
ing multiple questions. We present the approach of mmSign after requesting the consent of each
subject to sign a consent form. Each subject then makes three signing attempts.

Following that, each participant evaluates the mmSign by responding to six questions that in-
vestigate usability across the following six aspects: ubiquity, security, privacy, efficiency, accuracy,
and user-friendliness. The six questions are listed as follows: (1) I think the application of the verifi-
cation method is ubiquitous; (2) I think the verification method is secure; (3) I think the verification
method is privacy-preserving; (4) I think the verification method is efficient; (5) I think the verifi-
cation method is accurate; and (6) I think the verification method is user-friendly. The responses
range from 1 to 10 on a scale of strongly disagree to strongly agree for each item.

5.2 User Study Results

Figure 20 shows the statistical results of this user study. We can observe that mmSign achieves
an average satisfaction score of over seven on all questions and close to nine on the three aspects
of security, efficiency, and accuracy. Specifically, the average scores for ubiquity, security, privacy,
efficiency, accuracy, and user-friendliness are 7.65 ± 2.26, 8.52 ± 1.89, 7.63 ± 2.39, 8.48 ± 1.84,
8.46 ± 1.14, and 7.52 ± 2.29, respectively. People’s understanding of mmWave radar varies due
to their differing levels of knowledge about this technology. Therefore, some subjects have ques-
tioned the ubiquity and privacy of mmWave radar. In addition, many subjects have not used an
automatic signature verification system. Thus, even though mmSign only requires a small number
of signatures for registration, some subjects still think it is time-consuming and labor-intensive,
leading to poor user-friendliness. These findings suggest that there may be some limitations of the
mmSign for certain users, particularly those with less familiarity with mmWave radar or automatic
signature verification systems, which contribute to the more dispersed scores on questions (1), (3),
and (6) in the user study. However, most users express satisfaction with mmSign in terms of secu-
rity, accuracy, and efficiency after experiencing it, resulting in the scores for these questions being
more concentrated. To wrap up, the overall scores of this user study indicate that users believe
mmSign has good usability.

6 LIMITATION AND FUTURE WORK

Efficiency of the meta-learning module. In mmSign, the meta-learning-based new user adap-
tation module adopts the MAML [34] as the training algorithm to enable fast-adaptive few-
shot learning. However, the MAML training process requires the calculation of a higher-order
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Fig. 20. User study results. 90 subjects are recruited to participate in a user study of mmSign, which has

six questions on ubiquity, security, privacy, efficiency, accuracy, and user-friendliness. For each question, the

responses span a scale from 1 (strongly disagree) to 10 (strongly agree).

derivative of the gradient, which can lead to high computational overhead [52]. In the future, we
will use multi-step loss optimization for MAML [4], the implicit MAML algorithm [52], and task-
adaptive MAML [6] to improve the efficiency of base model training for new user adaptation. In
addition, the initial network model trained by using the MAML mechanism may be biased towards
a subset of tasks generated in the meta-training stage and may lack the ability to generalize to new
task domains. To alleviate this situation, we will use the task-independent meta-learning [34] al-
gorithm to improve the generalization ability of the model.

Lack of forgery signatures. The implementation of new user registration in mmSign requires
only a few training samples. However, in real-world scenarios, obtaining negative samples in the
form of forged signatures poses a challenge, as the new user may only have access to their gen-
uine signatures. Three types of forgery signatures exist in the system: random forgery signatures,
skilled forgery signatures, and imitative forgery signatures. While we can replace random forgery
signatures with genuine signatures of other users, the current stage restricts us from addressing
skilled and imitative forgery signatures, and we rely on other users to perform imitation. Sev-
eral approaches have been proposed to address the issue of binary classification problems that
involve only one class of samples. These approaches include support vector domain description
(SVDD) [53], PU learning [7], and generative adversarial network (GAN)–based methods [2, 29].
Nevertheless, the integration of these methods with few-shot learning poses a challenge in achiev-
ing accurate signature verification using a limited number of labeled samples, which will be further
explored in our future work.

Robustness of mmSign in the long term. The design principle of mmSign is that when the
user signs the same user name, the behaviors of different users are distinct, such that mmSign
can distinguish among people from the collected mmWave sensory data. In mmSign, the specific-
designed signal processing algorithm and the transformer-based meta-learning model make the
handwritten signature verification resistant to adversarial attacks. However, a recent study [74]
indicates that the behavior of individuals may change slightly over time, which poses a non-trivial
challenge to mmSign. Therefore, the core of the solution to this challenge is how to make mmSign
adaptable to the gradual changes in handwriting styles of different users while maintaining the
accuracy of the verification. In the future, we will use domain adaptation methods [44, 76] and
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lifelong learning methods [3, 60] to enable mmSign to be adaptable to the gradual changes in
handwriting styles.

7 CONCLUSION

In this article, we present an mmWave-based online handwritten signature verification system,
mmSign, by extracting unique behavioral characteristics of handwritten signatures using commer-
cial mmWave radar. Particularly, mmSign designs a series of novel signal processing algorithms to
eliminate various noises and extract features from the raw signals during the signature extraction
process. In addition, a meta-learning mechanism is introduced in mmSign to improve the adap-
tation performance of the transformer-based verification model for new users. Extensive evalua-
tions in different real-world environments using various signing pens and surfaces demonstrate
that mmSign achieves an average verification accuracy of 84.07%, 87.31%, 91.12%, and 96.54% in
the one-shot, three-shot, five-shot, and ten-shot settings, respectively, while also effectively resist-
ing common forgery attacks. To the best of our knowledge, mmSign is the first work to utilize
mmWave signals for online handwritten signature verification, offering a new approach to the
development of secure and reliable signature verification.
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