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Abstract—Video surveillance systems play a crucial role in ensur-
ing public safety and security by capturing and monitoring critical
events in various areas. However, traditional surveillance cameras
face limitations when it comes to malicious physical damage or
obscuring by offenders. To overcome this limitation, we propose
M2 VISION, which is the first millimeter-wave (mmWave)-based
video reconstruction system designed to enhance existing video
surveillance cameras. M2 VISION utilizes mmWave to sense the
profile and motion signature of the target, integrating it with previ-
ously acquired visual data about the environment and the target’s
appearance, thereby facilitating the reconstruction of surveillance
video. Specifically, our proposed system incorporates a dual-stage
mmWave signal denoising algorithm to efficiently eliminate the
noise and multiple-input multiple-output virtual antenna enhanced
heatmap generation (MVAE-HG) method to obtain fine-grained
mmWave heatmaps responsive to the target’s profile and motion in-
formation. Moreover, we design the mm2Video generative network
that first employs a multi-modal fusion module to fuse the mmWave
and pre-acquired visual data, then use a conditional generative ad-
versarial network (cGAN)-based video reconstruction module for
surveillance video reconstruction. We conducted comprehensive
experiments on M2 VISION using a commercial mmWave radar and
four surveillance cameras across various environments, with the
participation of seven individuals. Evaluation results show that M2

VISION can achieve an average structural similarity index measure
(SSIM) of 0.93, demonstrating its effectiveness and potential.

Index Terms—Deep generative network, video reconstruction,
mmWave sensing.
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I. INTRODUCTION

W ITH the escalating need for enhanced security in con-
temporary society, video surveillance systems have

emerged as a critical element not only in industrial and com-
mercial sectors but also within residential environments. These
surveillance systems, underpinned by advanced technological
components, offer myriad benefits, including the deterrence of
unlawful activities, documentation of events, and provision of
vital evidence, thereby contributing significantly to the overall
security paradigm. Moreover, the video surveillance industry is
undergoing rapid evolution, with the market revenue reaching
$48.7 billion in 2022 and projected to reach $76.4 billion by
2027 [1].

Recognizing the critical role of cameras in security systems,
offenders often target surveillance cameras as the initial attack
vector, intending to incapacitate the entire video surveillance
system. These attacks on surveillance cameras can be catego-
rized into two main types: non-physical attacks and physical
attacks. Non-physical attacks encompass the manipulation of
surveillance systems without any physical intervention, typi-
cally exploiting system vulnerabilities or tampering with the
camera’s Ethernet cable to seize control of the signal from Eth-
ernet surveillance cameras [2]. These intrusions have the capa-
bility to manipulate surveillance content, deceiving the surveil-
lance system and generating a spoofing effect. Additionally,
as intelligent surveillance systems [3] become more prevalent,
adversarial attacks [4] have surfaced as a means to evade these
advanced systems. On the other hand, the inherent limitations of
camera line-of-sight (LoS) often leave surveillance cameras ex-
posed, rendering them susceptible to physical attacks. Physical
attacks involve direct tampering with the surveillance camera
itself. This can entail using tools to obstruct the camera’s view
or causing physical damage to the camera, rendering it incapable
of capturing visual information.

Efforts to combat non-physical attacks on surveillance sys-
tems include traditional watermarking-based [5], [6] and statis-
tical features-based [7], [8] methods. Deep learning techniques
[9], [10] have also been applied for this purpose. Furthermore,
researchers are exploring the potential of using Wi-Fi signal [11]
for video tampering detection, showcasing a broadened scope
for countering non-physical attacks against surveillance systems
through diverse technological avenues. Despite the substantial
efforts in countering non-physical attacks, addressing physical
attacks on surveillance systems remains a significant challenge,
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Fig. 1. Scenario of M2 VISION . When the surveillance camera is vandalized
or obscured, M2 VISION uses mmWave devices to sense the target and reconstruct
the surveillance video.

as existing software-level techniques are inherently inadequate
to address such attacks. An effective countermeasure against
physical attacks involves restoring compromised or missing
video data through alternative data modalities. Radio frequency
(RF) signals emerge as a promising option for this purpose,
primarily attributed to their indifference to variations in light
conditions and their ubiquity. One notable endeavor in this field
is Wi2Vi [12], which leverages Wi-Fi signals for video recon-
struction. However, Wi2Vi is limited to producing grayscale
videos, and the resulting representation of human subjects is
excessively indistinct. Further, although CSI2Video [13] offers
the capability to generate color video frames, its efficacy is
demonstrated in a singular scenario, leaving the performance
in alternative scenarios unexplored.

Although Wi-Fi devices are ubiquitous, Wi-Fi-based sensing
solutions encounter several notable limitations. First, schemes
using Wi-Fi require modifications to the network interface cards
(NICs), and Wi-Fi-based approaches must operate two devices
(i.e., transmitter and receiver) simultaneously, thereby exacer-
bating user inconvenience and complicating deployment efforts.
Furthermore, the inherent limitations and severe indoor multi-
path effects of Wi-Fi signals exacerbate the system’s inability
to achieve accurate sensing, which significantly hampers the
system’s ability to capture the intricate details and subtleties of
the target.

In this paper, we introduce M2 VISION, the first millimeter-
wave (mmWave)-based surveillance video reconstruction
system designed to enhance the functionality of surveillance
cameras. The proposed system offers a novel solution to
reconstruct lost surveillance video by leveraging the fine-grained
sensing capabilities of commercial off-the-shelf (COTS)
mmWave radar. M2 VISION utilizes the fine-grained sensing
capability of mmWave radar to sense the target’s profile and
motion information, and reconstruct the surveillance video by
combining the target’s appearance and environment information
previously captured. The application scenario of M2 VISION is
illustrated in Fig. 1. When the target breaks into the surveillance
area, he/she destroys or obscures the surveillance camera,
resulting in the loss of surveillance video data. At this time,
the mmWave radar senses the environmental intruder and

reconstructs the surveillance video frames by combining the
target’s appearance information obtained before the camera was
destroyed or obscured and the known environmental informa-
tion. Two challenges need to be addressed to realize M2 VISION:

Challenge 1. Fine-grained profile and motion feature extrac-
tion from single-chip COTS mmWave Radar: Though single-chip
mmWave radar excels at detecting the presence or velocity of the
target, the reconstruction of video demands micro-level detail,
necessitating a novel approach to denoise the mmWave signal
and extract fine-grained features of the target. These features
encompass the directionality of movement, gait patterns, and
three-dimensional positioning, collectively forming the target’s
detailed profile and motion signature. To address this, we in-
troduce a dual-stage mmWave signal denoising algorithm to
perform noise reduction before extracting the target’s range
and angular information, thus effectively mitigating the impact
of ambient environmental noise. Meanwhile, to capture intri-
cate features from the denoised mmWave data, we propose
the Multiple-input multiple-output Virtual Antenna Enhanced
Heatmap Generation (MVAE-HG) method to generate three
kinds of fine-grained heatmaps reflecting the profile and motion
signature of the target.

Challenge 2. Intrinsic difference between mmWave data and
video data: Video data exhibits significant modality differences
compared to mmWave data. While fine-grained mmWave fea-
tures can be obtained, reconstructing the video data from these
features poses a significant challenge. To tackle this challenge,
we utilize the 3D human mesh as a medium and propose a
theoretical model to explore the inherent correlation between
video data and mmWave data. However, the intricate signal
reflection characteristics of the human body make it challenging
to derive corresponding video data from mmWave data through
mathematical calculations. Thus, built on the strength of the
deep generative model, we design the mm2Video network, a
deep generative network with a multi-modal fusion module and
a video reconstruction module, enabling effective conversion of
mmWave features into video data.

The main contributions of this paper are as follows:
� We propose M2 VISION, the first mmWave-based video

reconstruction system, which overcomes the shortcomings
of existing video surveillance systems by continuing to
provide surveillance information via mmWave radar after
the camera has been physically damaged or obscured.

� M2 VISION proposes several approaches for reconstructing
surveillance video from mmWave data with limited visual
data, including a dual-stage mmWave signal denoising al-
gorithm to remove pervasive noise, the MVAE-HG method
to generate fine-grained heatmaps reflecting the target’s
profile and motion signature, and the mm2Video generative
network to fuse different modalities features and generate
surveillance video data. These methods address the key
challenges presented above to recover surveillance video
data.

� We conduct real-world experiments with seven participants
in four different environments using different surveillance
cameras. The evaluation results show that M2 VISION

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 11,2024 at 01:28:42 UTC from IEEE Xplore.  Restrictions apply. 



14594 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 12, DECEMBER 2024

Fig. 2. Illustration of FMCW signal processing.

achieves an average structural similarity index measure
(SSIM) of 0.93.

II. PRELIMINARY

A. mmWave Sensing

The Frequency Modulated Continuous Wave (FMCW)
mmWave radar employs the FMCW signal, commonly known as
the chirp signal, as depicted in the upper part in Fig. 2. This chirp
signal exhibits a linear increase in frequency over time t and can
be described by f = f0 +Kt, where f0 represents the starting
frequency and K is the frequency modulation slope. Given an
amplitudeA for the transmitted signal at time t, the mathematical
expression for the transmitted FMCW signal ST (t) is

ST (t) = Aej(2πf0t+πKt2). (1)

Upon encountering an obstacle, such as a human, at a distance
d, the mmWave radar captures a time-delayed version of the
transmitted signal, identified as SR(t):

SR(t) = αST (t− τ) = αAej(2πf0(t−τ)+πK(t−τ)2), (2)

where α is the path loss, τ = 2d/c is the time delay, and
c represents the speed of light. Subsequently, the transmitted
signal ST (t) is mixed with the received signal SR(t), and the
sum frequency component is filtered out by a Low Pass Filter
(LPF) to obtain the Intermediate Frequency (IF) signal SI(t):

SI(t) = LPF{ST (t) · SR(t)} = αA2ej4π(f0+Kt)d/c, (3)

The FMCW mmWave radar offers the capability to extract
essential information regarding the range, velocity, and angle
properties of the target. Specifically, as shown in the lower part
of Fig. 2, the range information of the target is determined by
applying the Fast Fourier Transform (Range FFT) to multiple
sampling points along the fast time dimension of the IF signal.
Furthermore, the velocity information of the target is obtained
by performing the Fast Fourier Transform (Doppler FFT) on
multiple IF signals spanning the slow time dimension within
a radar frame. Moreover, the angle information of the target
is derived by subjecting the IF signals acquired from distinct
receiving antennas to the Fast Fourier Transform (Angle FFT)
operation. Collectively, these processes are commonly referred
to as the 3D FFT, which responds to phase changes in different
dimensions of the IF signal.

Fig. 3. Correlation analysis. Both the video data and mmWave data are
functions (F1 and F2) of the human body. Therefore, a non-linear relationship
(6) exists between them.

B. Correlation Analysis of Video Data and mmWave Data

Video Data: Given a video frame V (t) depicting a person
at time t, the 3D human mesh can be obtained by applying a
human mesh recovery algorithm [14]. This algorithm represents
the human as a collection of 3D points that capture both the shape
(i.e., variations in height, weight, and body proportions) and the
body’s pose (i.e., articulation-induced deformations). To model
the human body, we utilize the EllipBody representation [15],
which employsL primitive ellipsoids to represent different body
parts, as illustrated in Fig. 3. This representation offers a concise
description of the underlying principles of mmWave signal
reflections by the body, as described in the subsequent paragraph.
The set of 3D points representing the lth body part at time
t can be denoted as Ml(t) = {xl

n(t) ∈ R3, n = 1, . . . , Nl}.
Consequently, the complete human body can be expressed as
H(t) =∑L

l=1Ml(t). Since this 3D point set is derived from
the video frame, there exists a mapping relationship denoted as
F1(·) between the video frame and the human body, which can
be expressed as follows:

V (t) = F1(H(t) +A(t)) = F1

(
L∑

l=1

Ml(t) +A(t)
)
, (4)

where A(t) represents additional information such as back-
ground and human appearance.

mmWave Data: When the transmitted chirp signal is reflected
by the surface of the lth body part, the received signal (or the
mixed IF signal) carries information about that specific body
part. This information is determined by two factors: the surface
area and the orientation of the body part. For instance, the human
torso exhibits higher reflectivity compared to other body parts
due to its larger surface area, resulting in a larger radar cross
section (RCS) captured by the scale parameter α in (2). The
orientation of the body part determines the direction of signal
reflection, which affects the phase of the received chirp signal
and subsequently the phase of the IF signal. The mmWave
data R(t) that we receive can be considered as a synthesized
signal of the reflected signals from all L body parts at time t.
It encapsulates valuable information about the human profile,
including the size and orientation of each body part, as well as
the motion characteristics of different body parts, as depicted in
Fig. 3. In real-world scenarios, mmWave radar signals are often
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Fig. 4. System overview. M2 VISION begins by using dual-stage denoising and MVAE-HG algorithm to generate detailed target profiles and motion heatmaps.
Once these heatmaps are generated, they are combined with previously obtained target appearance and environmental vision information through a DCN-based
multi-modal fusion module to ensure efficient fusion of different data types. Finally, a cGAN-based video reconstruction module is designed to generate the final
surveillance video.

contaminated with noise from various environmental sources,
as well as reflections originating from the human body. Conse-
quently, the mmWave data can be mathematically modeled as a
function of the 3D human mesh and ambient noise:

R(t) = F2(H(t) +N (t)) = F2

(
L∑

l=1

Ml(t) +N (t)

)
,

(5)
where F2(·) represents the mapping relationship from the hu-
man body to the received mmWave data, and N (t) represents
the additional noise interference.

Correlation: As indicated by (4) and (5), both the video data
V (t) and mmWave data R(t) can be defined as functions of
the 3D points of the human body. Therefore, the mmWave
data, along with supplementary visual information such as back-
ground and human appearance details, can be transformed into
video data through a non-linear function G(·):

V (t) = G (R(t),A(t)) . (6)

Nonetheless, accurately determining the exact form of the func-
tion G(·) using traditional mathematical methods is challenging
due to the inherent complexity and non-linearity associated with
the transformation between the distinct modalities of mmWave
and video data. In this work, we leverage the remarkable non-
linear fitting capabilities of deep learning to train a deep gen-
erative model. This model establishes the mapping relationship
between mmWave data and video data, enabling accurate trans-
formation between these two modalities.

III. OVERVIEW

A. Problem Statement

In this paper, we consider the problem of recovering surveil-
lance video using mmWave signals. Specifically, in scenarios
where surveillance equipment is interfered with, maliciously
destroyed, or obscured, we aim to utilize a single commercial
single-chirp mmWave device to sense the profile and motion

information of the target within a monitored area and reconstruct
the surveillance video.

Let R(t) represent the mmWave data captured when the
camera is malfunctioning. Given that we have knowledge of
the background information Ie and can capture the appearance
information of the target Ia before the camera malfunction, our
objective is to recover the video frame V (t) using the following
equation:

V (t) = fθ(g(R(t)), Ie, Ia), (7)

where fθ(·) is our proposed video reconstruction model with
learnable parameters θ, and g(·) is the designed mmWave fea-
ture extraction algorithm. Consequently, g(R(t)) describes the
relationship between extracted features and reflected mmWave
signals from L body parts.

B. System Overview

As shown in Fig. 4, M2 VISION has two parts: mmWave
Heatmap Generation and mm2Video Generative Network.

The mmWave heatmap generation focuses on generating
heatmaps that encapsulate the human profile and motion in-
formation of the target, which are subsequently utilized for
video reconstruction. To achieve this, the raw mmWave data
undergoes a two-stage denoising algorithm, meticulously de-
signed to remove various types of noise effectively. Following
that, the MIMO virtual antenna enhanced heatmap generation
(MVAE-HG) method is employed to produce three types of
fine-grained heatmaps: azimuth-range heatmap, elevation-range
heatmap, and range-Doppler heatmap. The azimuth-range and
elevation-range heatmaps efficiently capture the target’s profile
information, while the range-Doppler heatmap represents the
target’s motion information.

The mm2Video generative network consists of two key mod-
ules: the multi-modal fusion module and the video reconstruc-
tion module. The main purpose of the multi-modal fusion mod-
ule is to encode and merge the mmWave data with pre-existing
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Algorithm 1: Dual-stage mmWave Denoising.
Input: M : raw IF matrix; NF : frame number; NI : IF
signal number; W : window size

Output: M ′′: dual-stage denoised IF matrix
1 for i = 0; i < NF − 1; i = i+ 1 do
2 n← 1

NI

∑NI−1
k=0 M(i, k, :) � Calculate the noise

vector
3 for j = 0; j < NI − 1; j = j + 1 do
4 t←M(i, j, :) � The jth IF signal in the ith radar

frame
5 M ′(i, j, :)← t− n � The initial denoised IF

matrix
6 end
7 end
8 while Angle Estimation do
9 for i = 0; i < �NF /W �; i = i+ 1 do
10 k← i ∗W : min((i+ 1) ∗W,NF − 1)
11 N(i, :, :)←mean(M ′(k, :, :)) � Calculate the

noise matrix
12 end
13 for i = 0; i < NF − 1; i = i+ 1 do
14 j = �i/W 	 � The noise matrix index
15 M ′′(i, :, :)←M ′(i, :, :)−N(j, :, :)
16 end
17 end

environmental and profile data. This integration process effec-
tively utilizes DCN-based encoders to perform multi-modal
fusion. Subsequently, the cGAN-based video reconstruction
module takes the fused feature map as input to facilitate the
reconstruction of surveillance videos.

IV. MMWAVE POSTURE FEATURE EXTRACTION

A. Data Preprocessing

The FMCW mmWave radar faces challenges in accurately
extracting target information from its surroundings due to the
presence of both dynamic and static targets. In addition to
capturing signals from moving targets, the mmWave radar also
captures reflections from stationary objects like tables, chairs,
and walls. Consequently, the resulting heatmaps may contain
significant noise, making it difficult to discern the relevant infor-
mation about the target. To mitigate the impact of static noise,
we design a dual-stage mmWave signal denoising algorithm,
outlined in Algorithm 1. Specifically, in the initial stage, to
mitigate the influence of static environmental reflections, which
remain consistent over short durations, we compute the average
of multiple IF signals within a single radar frame (line 2). This
average is treated as the static noise vector and is subtracted from
all IF signals to reduce static interference (line 5). The second
stage of denoising, which is described in detail in the upcoming
section, further refines the pre-denoised signal for more accurate
angle estimation.

B. MIMO Virtual Antenna Enhanced Heatmap Generation

1) Profile Information Acquisition: The pre-denoised signal
initially employs the range-FFT in the fast time dimension to
compute the target’s range information. This range information
provides an indication of the target’s distance from the mmWave
device, facilitating the determination of the target’s depth in-
formation within the reconstructed video frame. In addition,
to enhance the robustness against other dynamic interference
targets, we utilize mmWave radar’s radial range resolution ca-
pability to eliminate the effects of distant interference targets
after performing range FFT. Specifically, we keep the closest
target to the radar as the main target and set the signals from
other dynamic targets to zero.

Despite the initial denoising stages described in Section IV-A,
some residual weak static noise may remain. Directly conducting
angle estimation in such conditions could amplify the effects of
these noise artifacts. We utilize the multiple signal classification
(MUSIC) algorithm [16] for angle measurement, which relies
on the orthogonality between the signal and noise subspaces.
However, if the residual noise from the initial denoising is not
effectively removed, this untargeted noise may be mistakenly
classified as part of the target signal. This misclassification
can alter the structure of the signal subspace, exacerbating the
impact of interfering noise and potentially compromising the
accurate identification of the target signal’s true direction. To
mitigate this issue, we have developed a sliding window-based
approach for additional denoising, as detailed in lines 8-17 of
Algorithm 1. Specifically, our method involves constructing a
noise matrix by computing the mean value of W radar frames
(line 11). Subsequently, the noise matrix is subtracted from each
radar frame within the sliding window, enabling secondary noise
elimination (line 15). Notably, the secondary stage denoising
process operates on the slow time dimension (between radar
frames). This is significantly longer compared to the initial stage
of denoising, which occurs in the fast time dimension (between
sampling points of a single IF signal). In this context, while
the target remains stationary in the fast time dimension, there is
relative movement in the slow time dimension. Consequently,
our proposed dual-stage denoising algorithm can effectively
distinguish the target from the background noise, ensuring it
is not erroneously filtered out.

The estimation of angles is facilitated using the secondary
denoised data. However, the employed single-chip mmWave
radar is equipped with only three transmitting antennas and four
receiving antennas, which restricts the acquisition of precise
angle information. To overcome the limited number of physi-
cal antennas problem, we employ the Multiple Input Multiple
Output (MIMO) virtual antenna technique, which enhances the
granularity of the resulting heatmaps. As depicted in Fig. 5,
the MIMO virtual antenna technique allows us to effectively
address the hardware limitations by virtually expanding the
three-transmitting four-receiving antenna array to behave as if
it were a twelve-virtual-receiving antenna array. Consequently,
eight virtual receiving antennas are utilized to calculate the
azimuth angle, while two virtual antennas are employed to
determine the elevation angle.
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Fig. 5. Virtual antenna array leveraged in M2 VISION.

However, given that the target is in motion and the virtual
antenna sets generated by Antenna 1 (Tx1) and Antenna 3
(Tx3) exhibit different air-port transmission times, the motion
of the target relative to the mmWave radar induces a Doppler
phase shift. This accumulated Doppler phase shift subsequently
impacts the accuracy of the subsequent angle estimation. There-
fore, it is imperative to execute Doppler phase compensation
before proceeding with angle estimation. The Doppler frequency
shift resulting from the target’s motion is expressed asΔf = 2v

λ
,

where λ denotes the wavelength, and v represents the target ve-
locity, calculable through Doppler FFT (refer to Section IV-B-2).
The Doppler phase shift can then be determined using Δϕ =
2πΔfTc, where Tc denotes the chirp duration Once the Doppler
phase shift is computed, it is essential to apply Doppler phase
compensation to the denoised data. For the data represented by
M(n, :) in the antenna dimension, where n denotes the virtual
antenna index, Doppler compensation can be executed using the
following equation:

M ′(n, :) = M(n, :)e−jnΔϕ. (8)

To derive the azimuth and elevation angle, we design a method
based on the MUSIC, which is a high-resolution direction-
finding algorithm designed for multiple antenna systems. Ini-
tially, we calculate the covariance matrix, denoted as R, of the
received signal matrixX fromK virtual antennas. This matrix is
obtained by averaging the outer product of the received signals:

R =
1

K

K∑
k=1

X(i)XH(i), (9)

where (·)H represents the conjugate transpose operation. Subse-
quently, we perform the eigendecomposition of the covariance
matrix:

Rx =
[
Us Un

][Λs

Λn

][
Us

Un

]
, (10)

where Us and Un are the signal space matrix and noise space
matrix, respectively, and Λs and Λn are diagonal matrices com-
prising the eigenvalues in the signal space and noise space. With
the eigendecomposition, the spatial spectrum can be expressed

Fig. 6. Heatmaps representing profile & motion information.

as:

P (θ) =
1

aH(θ)UnUH
n a(θ)

, (11)

where a(θ) is the steering vector associated with the desired
angle θ. Finally, we compute the spatial spectrum corresponding
to each angle. Combining this angle information with the pre-
viously obtained range information, we generate the heatmaps
that effectively represent the target’s profile information. The
resulting two heatmaps are presented in Fig. 6(a) and (b), re-
spectively.

2) Motion Information Acquisition: In addition to acquiring
profile information, obtaining the velocity information of the
target is crucial. This information plays a vital role in the
mm2Video generative network, as it enables the differentiation
of various body components based on their unique velocity
characteristics, thereby enhancing the accuracy of reconstructed
video frames. To achieve this, we directly utilize the first-stage
denoised data and perform the Doppler FFT along the slow
time dimension. This operation effectively extracts the target’s
velocity information. The resulting range-velocity heatmap, as
depicted in Fig. 6(c), showcases the mmWave radar’s capability
to accurately discern distinct velocity components associated
with different human body parts.

We leverage three heatmaps generated from mmWave signals,
instead of using raw mmWave data, as inputs for the subsequent
mm2Video generation network. This approach primarily aims to
minimize noise and enhance the effectiveness of the subsequent
learning process. The mmWave heatmaps filter out irrelevant
noise, sharpening the focus on critical data patterns related to
the target’s profile and motion.

V. MM2VIDEO GENERATIVE NETWORK

Drawing on the formulae delineated in Section II-B, we can
infer a correlation between video and mmWave sensing data for
monitoring purposes. However, this relationship exhibits a high
degree of complexity, rendering it difficult to fully encapsulate
using traditional mathematical methods. Our primary objective
is to transform mmWave data into video data. To accomplish
this, we propose the mm2Video generative network as shown in
Fig. 7. The designed mm2Video generative network comprises
two key components: a multi-modal fusion module and a video
reconstruction module.
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Fig. 7. mm2Video generative network.

A. Multi-Modal Fusion Module

Traditional image processing networks [17], [18] are struc-
tured to handle individual RGB images as their inputs, function-
ing on a per-image level. In contrast, the task of reconstructing
video from surveillance footage necessitates the integration
of features from disparate sources – specifically, optical and
millimeter-wave (mmWave) data – to produce comprehensive
video frames. Relying on unimodal features alone can lead to
missing critical features, as data from both modalities are critical
to recovering video frames. In order to effectively fuse data from
different modalities, we propose a multi-modal fusion module
that combines the three mmWave heatmaps and two visual
images for a more effective representation of the surveillance
video frame.

Standard Convolutional Neural Networks (CNNs) are com-
monly utilized for image fusion tasks, relying on the fundamen-
tal convolution operation:

Y(p) =
∑
p′∈Ω
X (p+ p′) ∗K(p′), (12)

where Y(p) denotes the output feature map, X (p) represents
the input feature map, K(p′) is the convolution kernel, and Ω
defines the neighborhood around the pixel p.

The mmWave heatmaps capture distinct features such as the
range, velocity, and angle of the target, the shape of these
features in heatmap varies greatly from scene to scene or from
relative position to position, even for the same target. Traditional
CNNs, as mentioned above, employ a fixed geometry in their
convolutional kernels, which can hinder their performance when
dealing with the diverse scaling, rotation, and deformation char-
acteristics present in mmWave heatmaps. These factors make
it challenging to effectively model and extract features from
mmWave heatmaps and fuse them with visual features using
traditional CNNs.

To address the aforementioned challenge, we propose a multi-
modal fusion module based on Deformable Convolutional Net-
works (DCNs) [19]. DCNs overcome this challenge by incor-
porating a learnable offset parameter within the convolutional
filter. This parameter enables the network to dynamically modify
the spatial sampling locations of the input mmWave heatmaps,
adapting to its specific geometric distortions. This deformable

mechanism significantly enhances the DCNs’ capability to ex-
tract relevant features from mmWave heatmaps, unaffected by
the typical distortions and anomalies, thereby improving target
feature extraction efficiency. This process can be expressed as:

Y(p) =
∑
p′∈Ω
X (p+ p′ +Δp′) ∗K(p′), (13)

where Δp′ denotes the offset for the pixel p′. During training,
the offsets are learned, allowing the model to adapt to geomet-
ric variations and focus on frequencies at different timescales.
These offsets are predicted by another convolutional layer:

Δp′ = Fo(X ,Ko), (14)

whereFo represents the offset layer, and Ko is the kernel for the
offset layer. To handle irregular grid sampling locations, bilinear
interpolation is employed:

I(p) =
∑

ε∈N(p)

X (ε) ∗max(0, 1− |px − εx|)

∗max(0, 1− |py − εy|), (15)

where I(p) denotes the interpolated value at location p, and
N(p) represents the set of nearest neighbor pixels around lo-
cation p. Combining the deformable convolution with bilinear
interpolation yields the final formula:

I(p) =
∑
p′∈Ω
I(p+ p′ +Δp′) ∗K(p′). (16)

The multi-modal fusion module employs three Deformable
Convolutional (DConv) [19] layers to process the input multi-
modal features. This design facilitates the fusion of three
mmWave features and two visual features. DConv introduces
an offset to standard grid sampling locations, thereby enabling
more flexible and enhanced feature extraction. This approach
optimally models the mmWave and visual features, making it
well-suited for the extraction and fusion of multi-modal data.
The fusion results serve as the condition for the subsequent video
reconstruction module.

B. Video Reconstruction Module

The video reconstruction module employs a cGAN archi-
tecture [20]. cGANs have delivered impressive performance in
image generation, restoration, and translation tasks [21], [22],
[23]. They overcome issues such as mode collapse, lack of
diversity, and instability that plague traditional GANs. By adding
a conditional vector and random noise during image generation,
cGANs offer better control and produce higher quality output.
The video reconstruction module is mainly composed of two
parts: the generator and the discriminator.

1) Generator: Traditional encoder-decoder networks used in
generators require information flow to pass through all layers,
which can increase computational and time costs, particularly for
image-to-image translation problems where inputs and outputs
share low-level information that does not need conversion [24].
To tackle this issue, we use the U-Net architecture [25] as
our generator’s network. Unlike traditional encoder-decoder
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Algorithm 2: Training Process for mm2Video.

Input: {(c1, r1), . . ., (cn, rn)}: n paired training data;
μ: batch size

Output: θD: parameters of discriminator; θG:
parameters of generator

1 for each epoch do
2 for each iteration do
3 Select μ paired instances from the input
4 Select μ noise samples {n1, . . ., nμ} from a

distribution
5 Produce synthetic data {r̃1, . . ., r̃μ}, r̃i = G(ci|ni)
6 Update discriminator parameter θD:

θD ← θD + η�Ṽ (θD)

7 Select μ noise samples {n1, . . ., nμ} from a
distribution

8 Select μ conditions {c1, . . ., cμ} from input
9 Update generator parameter θG:

θG ← θG + η�Ṽ (θG)

10 end
11 end

networks, feature maps from each convolutional layer are con-
catenated with the corresponding upsampling layer, enabling
efficient utilization of feature maps in subsequent calculations.
This is referred to as skip connections, as shown by the blue
dashed line in the upper panel of Fig. 7.

2) Discriminator: The discriminator is designed with three
convolutional layers that work together to process the input
spectrograms. In contrast to traditional discriminators that eval-
uate the entire video frame, our approach focuses on smaller,
patch-level regions. The discriminator examines and classifies
each patch within the video frame as either real or fake, providing
a more detailed analysis of the generated output. The discrim-
inator’s convolutional layers are responsible for extracting and
learning relevant features from these patches, enabling the model
to make accurate decisions regarding their authenticity. This ap-
proach allows the model to provide a comprehensive assessment
of the output, considering both local and global information
within the video frame.

Training: The multi-modal fusion module has three DConv
layers for mmWave and visual features, respectively, with a
kernel size of 3× 3 with padding of one. The video recon-
struction module consists of a generator and a discriminator.
The generator uses three stages: downsampling and upsampling,
with concatenation. Its submodules apply a 4× 4 kernel, stride
of two, and padding of one. The discriminator employs three
convolutional layers with a 1× 1 kernel, leaky ReLU activation,
and batch normalization. Models are trained for 300 epochs,
using a 0.0002 learning rate for the first half and Adam op-
timizer for adaptive learning rate adjustments. To make the
reconstructed video frames more similar to the ground truth,
we use the Mean Squared Error (MSE) loss function for the
magnitude of generated results and original frames.

Fig. 8. Training process.

Fig. 9. Experimental setup.

Algorithm 2 illustrates the training process, where θG and
θD denote parameters of G (generator) and D (discrimina-
tor) respectively. V is the optimization objective function of
cGAN [20]. Each epoch first updates θD with θG held fixed, then
proceeds to update θG with θD fixed. The generator G combines
the condition c with a noise vector n to generate a fake video
frame G(n|c). Moreover, the discriminator D receives another
input that combines r and c to represent the real video frame
under condition c. During training, D learns to differentiate
between G(n|c) and the ground truth G(r|c), while G adjusts
its parameters to produce a G(n|c) that can deceive D. After the
training, the generator G can correctly reconstruct a video frame
using mmWave data. The mm2Video model’s effectiveness is
evident in Fig. 8, showing the initial 200 epochs of training.

VI. EVALUATION

A. Experimental Setup

Experimental devices: The experimental devices used to eval-
uate M2 VISION are shown in Fig. 9(a). Specifically, TI IWR1843
FMCW mmWave radar1 and DCA1000EVM2 are leveraged to
collect mmWave data. The mmWave radar, operating at 77 GHz-
81 GHz, employs three transmitter antennas to emit signals and
four receiver antennas to capture signals. The default frame
rate for mmWave radar is 20 FPS, with each frame containing
255 chirps and each chirp containing 256 ADC samples. Four
commonly used surveillance cameras, namely Xiaomi CW400,
Xiaomi AW300, EZVIZ H5, and TP-LINK IPC44AW are em-
ployed to acquire the video data. The cameras’ specifications

1IWR1843: https://www.ti.com/product/IWR1843
2DCA1000EVM: https://www.ti.com/tool/DCA1000EVM
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Fig. 10. Experimental results.

TABLE I
CAMERA SPECIFICATIONS

are outlined in detail in Table I. The mmWave radar is located
directly below the surveillance camera, and the position of the
two is fixed during the experiment.

Data collection: We recruited seven participants (four males
and three females)3 to evaluate M2 VISION. Their height range
between 1.54 m and 1.83 m, and their weight range between
47.5 kg and 81 kg. The four scenarios for collecting data are
shown in Fig. 9(b). We used Xiaomi CW400 as the default
surveillance camera for video data collection. In each scenario,
each participant walked randomly in front of the camera and
mmWave radar for 20 minutes. We downsampled the frame rate
of the mmWave radar and the camera to 10 FPS. Thus, each
volunteer has a total of 12,000 video frames per scenario.

Metrics: We use SSIM [26] to evaluate M2 VISION’s perfor-
mance, which compares the structural information of two images
or video frames, such as luminance and contrast, rather than just
comparing pixel values. SSIM can be calculated as

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
, (17)

whereμ(·) is the average of (·), σ2
(·) is the variance of (·), and σxy

is the covariance of x and y. In addition, to accurately evaluate
the discrepancies in localization and pose on the generated target

person, we utilize the Mask R-CNN [27] to extract masks from
both the real and the reconstructed video frames. Subsequently,
we measure the intersection over union (IoU) between these
masks. The IoU is defined by the equation:

IoU =
|A ∩B|
|A ∪B| , (18)

where A and B denote the areas covered by the masks of the
real and reconstructed video frames, respectively.

B. Overall Performance

We evaluate the overall performance of M2 VISION under four
scenarios. As depicted in Fig. 10(a), the mean SSIM of the recon-
structed video frames and real video frames in S1, S2, S3, and S4
are 0.89, 0.93, 0.95, and 0.93, respectively. Similarly, the mean
IoU for the reconstructed and real video frames in S1, S2, S3, and
S4 are indicated as 0.79, 0.82, 0.86, and 0.81. The slightly lower
SSIM and IoU values observed in scenario S1 relative to S2
and S3 can likely be ascribed to the increased scene complexity
caused by numerous background elements such as air condi-
tioners, televisions, tables, and chairs, which present challenges
to accurate video reconstruction. Additionally, unlike SSIM,
which provides a broader assessment of the overall quality of
the recovered video, IoU primarily evaluates the localization and
pose accuracy of the target. Consequently, the lower elevation
angle resolution contributes to a comparatively lower IoU value.
Despite this minor limitation, M2 VISION demonstrates robust
performance across varying scenarios, emphasizing its potential
as a reliable surveillance tool.

Fig. 10(c) presents a visual comparison of the reconstructed
and original video samples across various participants and

3Ethical approval has been granted by the corresponding organization.
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scenarios. Samples 1 and 2 exemplify how M2 VISION can
successfully reconstruct two distinct subjects within the same
environment. Samples 3 and 4 demonstrate the system’s capacity
to handle different subjects in various environments. Notably,
Sample 4 provides evidence that M2 VISION can even reconstruct
a subject’s motion with high accuracy. Furthermore, Fig. 10(d)
and (e) illustrate the video reconstruction results when a partici-
pant walks freely in two randomly selected scenarios. Evidently,
M2 VISION demonstrates exceptional accuracy in capturing the
target’s position and pose information. However, there is a
slight degradation in the reconstruction quality below the knee,
attributable to the constrained elevation angle sensing capability
of the mmWave radar.

C. Performance Comparison

Comparison with cGAN: We evaluate the performance dif-
ferences between our proposed mm2Video generative network
and the traditional cGAN by directly concatenating visual data
with mmWave heatmaps as inputs to the traditional cGAN. The
result of this experimental comparison is illustrated in Fig. 10(b).
Compared to the traditional cGAN, our approach offers en-
hanced performance by extracting and fusing features from
different modalities, rather than simply concatenating all data.
Our proposed multi-modal fusion module effectively captures
the distinct characteristics of various modalities, enabling more
accurate feature representation and fusion.

Comparison with baselines: We compare our system
with the state-of-the-art Wi-Fi-based video recovery system
CSI2Video [13]. We used two laptops (ThinkPad T400) with
Ubuntu 14.04 LTS installed as transceivers, both equipped with
Intel 5300 network interface cards (NICs) with the CSI tool [28]
installed, operating in IEEE 802.11n monitor mode on Channel
120 at 5.6 GHz, for collecting Wi-Fi channel state informa-
tion (CSI). The comparison result is shown in Fig. 10(b). Our
mmWave-based scheme outperforms the Wi-Fi-based scheme,
primarily because the multipath effect of Wi-Fi signal is more
pronounced compared to mmWave signal in indoor environ-
ments. Additionally, the lower resolution of CSI further dimin-
ishes its performance.

D. Dependence on Visual Data

We evaluate how our system’s performance varies with dif-
ferent degrees of visual data absence. Given that our network’s
inputs are fixed, we cannot directly remove the visual modal data.
Instead, we substituted the visual data with 2D Gaussian white
noise to simulate the absence of visual inputs. We conducted
experiments where we substituted Gaussian white noise for 1)
the environment image, 2) the appearance image, and 3) both the
environment and appearance images. The results are presented
in Table II.

There is a notable decline in performance after the removal
of the visual modal data, particularly when environmental in-
formation is excluded. In our scheme, the reconstructed video
frames inherently consist of visual data. This a priori visual
data serves as the foundational basis for generating subsequent
video frames. The target pose and position information, derived

TABLE II
DEPENDENCE ON VISUAL DATA

from mmWave data, are then superimposed on these frames to
create complete video visuals. Without this initial visual data,
the framework lacks a fundamental basis for video recovery, and
thus a priori visual data is critical to recovery results.

E. Parameter Evaluation

Impact of virtual antenna number: In this experiment, we in-
vestigate the impact of varying the number of virtual antennas on
M2 VISION’s performance. Specifically, we conduct evaluations
using 4, 6, and 8 virtual antennas. As shown in Fig. 11(a), using
only four receiving antennas (no virtual antennas) results in an
average SSIM of 0.73. Notably, the SSIM values increase to
0.86 and 0.93 when six and eight virtual antennas are employed,
respectively. This improvement is due to the increased angle
resolution of the mmWave radar. The angle resolution can be
expressed as θres = 2/(N cos(θ)), where N is the number of
receiver antennas, and θ is the angle of arrival. The increased
virtual antennas number enhances azimuth angle estimation and
provides more detailed target profiles.

Impact of dual-stage denoising: We evaluate the effective-
ness of our dual-stage denoising algorithm through experiments
involving three denoising strategies: no denoising, single-stage
denoising, and dual-stage denoising, applied to the mmWave
data. As shown in Fig. 11(b), single-stage denoising increases
the average SSIM value by 6.15%, while the dual-stage approach
further elevates it by 3.23%. This improvement is due to the
dual-stage algorithm’s ability to effectively eliminate environ-
mental noise initially, and further reduce residual noise impact
on angle estimation subsequently, thus attesting to the proposed
algorithm’s efficacy.

Impact of camera type: We evaluate the effect of surveillance
camera types on mm2Video training using four different cam-
eras, as outlined in Table I. We collected thirty minutes of data for
each participant in scenario S2. This data was partitioned, with
80% for training and the remaining 20% for testing. As shown in
Fig. 11(a), the SSIM obtained from the test data are 0.92, 0.91,
0.89, and 0.91 using the video data collected from camera C1,
C2, C3, and C4 for training. Given that the lowest resolution used
is 1920× 1080 (C3 and C4), which is uniformly downsampled
to 256× 256 for mm2Video network input, therefore the type
of camera has no significant impact on system performance.
This underscores M2 VISION’s potential to be widely deployed
in future surveillance systems.

Impact of mmWave radar chirp loop: The number of chirp
loops, as discussed in Section II-A, corresponds to the number
of slow time samples in one radar frame and determines the
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Fig. 11. Parameter evaluation results.

velocity resolution of the mmWave radar. Fig. 11(b) reveals that
an increase in chirp loops from 64 to 255 enhances the average
SSIM of M2 VISION from 0.862 to 0.93. The velocity resolution
of the mmWave radar can be defined as vres = λ/(2NcTc), where
λ is the wavelength, Nc is the number of chirp loops, and Tc is
the chirp duration. As Nc increases, the radar can sense velocity
components with finer granularity, leading to a more detailed
motion heatmap. The enhanced granularity allows M2 VISION

to more accurately differentiate between body parts, leading to
superior video reconstruction.

Impact of occlusion: To assess the impact of occlusion on the
performance of M2 VISION, we conducted experiments using
different occluding materials, namely cardboard box, wooden
board, and fabric, to mask the mmWave radar. The network
trained with the data collected in Section VI-A is directly
utilized for testing with the newly collected occluded data.
The evaluation results, presented in Fig. 11(f), demonstrate the
average SSIM under the cardboard box, wooden board, and
fabric occlusions to be 0.92, 0.91, and 0.92, respectively. The
results indicate that M2 VISION is resilient to occlusions, as it
achieves favorable video reconstruction results even when the
radar is obstructed by different materials.

Impact of training size: In the experiment, we evaluate the im-
pact of different training set sizes on the final reconstruction re-
sults. The training sets were comprised of 100k, 150k, and 260k
video frames, respectively. The evaluation results, presented in
Fig. 11(f), demonstrate that the mm2Video generative network
achieves the best reconstruction performance when trained on
a larger dataset with the 260k training set size achieving the
highest SSIM of 0.92. Remarkably, even with a smaller training
set size of 100k samples, the network exhibits a relatively high
SSIM score of 0.74, indicating its strong generalization ability.

Impact of target position: In this experiment, we investigate
the impact of different target positions on video reconstruction.
Participants are instructed to march in place at various positions

within a range of 2 m to 6 m and angles between -60◦ and
60◦ relative to the mmWave radar in S2. The collected data are
then used to reconstruct the video data. As shown in Fig. 11(h),
although the mmWave radar is not significantly affected by radial
distance, as the target’s radial distance increases, the occupied
angle becomes smaller, resulting in a slight decrease in system
performance. Furthermore, the radar angle resolution decreases
as the angle of arrival increases. Consequently, M2 VISION’s
performance is negatively impacted as the angle of the target
increases.

Impact of illuminance level: To evaluate the influence of
illuminance level on the performance of M2 VISION, we collected
visual and mmWave data at different times of the day in S3:
1) sunset, 2) noon, 3) dusk, and 4) night. Fig. 11(h) displays
the mean SSIM values for these times, recorded as 0.94, 0.96,
0.91, and 0.89, respectively. M2 VISION demonstrates enhanced
performance under higher illuminance levels, which may be
due to better acquisition to visual information of the target’s
appearance. However, the minimal variance among these val-
ues suggests that M2 VISION is robust, maintaining consistent
performance across a range of illuminance conditions.

Robustness against dynamic interference: We evaluated the
robustness of M2 VISION against multiple dynamic objects in S3.
In addition to the main target, we introduced two other people as
dynamic interference targets to perform the following actions:
a) walk further away from the radar compared to the target,
b) walk at the same radial distance as the target, and c) walk
radially along the radar. The experimental results in Fig. 12
show that Case a performs best and Case b performs worst.
This is because our system utilizes the radar’s range-resolving
capability described in Section IV-B-1 to effectively eliminates
interference from more distant dynamic targets, as shown in
the results of Case a. However, if the interference target is
close and always within the same range bin as the main target,
the algorithm struggles to distinguish them. This makes the
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Fig. 12. Robustness against dynamic interference.

TABLE III
CROSS-PERSON STUDY

mmWave data becoming ineffective, leading to poor system
performance, as shown in Cases b. We will further discuss the
scenario involving multiple dynamic targets in Section VIII.

Cross-person study: In order to evaluate the impact of unseen
targets, we iteratively selected one person for testing and the
remaining six for training. We then averaged the results over
seven iterations for each scenario. The evaluation results are
shown in Table III. The experimental results indicate that the
SSIM decreases by an average of 0.033 when encountering an
unknown target. Although this represents a minor performance
degradation, the overall impact on our system remains minimal.

VII. RELATED WORKS

A. RF Imaging

The field of RF sensing [29], [30], [31] is undergoing rapid
evolution, witnessing the utilization of various RF signals, in-
cluding Wi-Fi [32], mmWave [33], LoRa [34], and RFID [35],
for various sensing tasks. RF imaging boasts the advantage
of non-line of sight (NLoS) capabilities, garnering significant
attention from researchers in recent years.

Wision [36] first explores the feasibility of achieving com-
putational imaging using Wi-Fi signals, which leverage the
designed algorithms to separate the multi-path Wi-Fi reflections
from different objects into a coarse-grained image. WiSIA [37]
leverages the COTS Wi-Fi devices to simultaneously detect
objects and humans, segment their boundaries, and identify them
within the image plane. The granularity of Wi-Fi imaging is
constrained by the bandwidth limitations of 2.4/5 GHz, prompt-
ing researchers to explore mmWave technology for imaging
purposes. For instance, Zhu et al. [38] proposed the construction
of a large synthetic aperture radar (SAR) by relocating a 60 GHz
mmWave device, employing RSS series analysis to profile and
image objects. mmEye [39] introduces a super-resolution imag-
ing algorithm that surpasses resolution constraints by jointly
utilizing the transmit and receive arrays of mmWave radar to
enhance spatial resolution.

As a subdomain of RF imaging, RF-based 3D human mesh
recovery has garnered significant interest among researchers,
which focuses more on the tracking and reconstruction of the

human body. RF-Avatar [40] utilizes Wi-Fi signals to recon-
struct a comprehensive 3D human mesh capturing both shape
and motion. Wi-Mesh [41] proposes to leverage the 2D angle
of arrival (AoA) estimation of the Wi-Fi signal reflections to
visualize the shape and deformations of the human body for
3D mesh construction. Furthermore, mmWave signal, with its
fine-grained sensing capabilities, has also been employed for
3D human mesh recovery. mmMesh [42] utilizes 3D point cloud
data acquired from mmWave radar for real-time 3D human mesh
estimation. M 4 esh [33] advances a step further by achieving
3D human mesh reconstruction of multiple targets using a single
COTS mmWave radar. In addition, m 3 Track [43] specializes in
using COST mmWave radar to track 3D posture across multiple
individuals simultaneously, rather than recovering video frame
data. The above mmWave-based sensing works motivate us to
assist video recovery through the fine-grained sensing capabili-
ties of mmWave.

B. Video Tampering Detection and Reconstruction

Video tampering detection is essential for the security of video
surveillance systems. Traditional methods are typically based
on watermarking [5], [44], which can be embedded directly
into the video frames or metadata, providing a unique signature
that can be used to detect tampering attempts. Meanwhile, the
statistical features [7], [45] are often used to detect tampering
attempts. Statistical features analysis provides a quantitative
framework for identifying anomalies and deviations from ex-
pected patterns, which can indicate potential tampering. With
the development of deep learning technology, various deep
learning networks [9], [10] are designed to carry out video
tampering detection. Furthermore, cross-modal techniques have
also shown promising results in video tampering detection. For
instance, Secure-Pose [11] leverages Wi-Fi signals to detect and
localize video forgery attacks in video frames.

Nonetheless, while these solutions can identify or locate fake
surveillance footage, they lack the capability to restore the orig-
inal videos and offer little assistance when surveillance cameras
are physically damaged or obstructed. Many works [46], [47]
attempt to restore the video source data using meta-information
recorded in the header of a file system, which is not possible
with meta-information lost. Therefore, attempts [48], [49] have
been made to restore the video data using the signature. In
addition, cross-modal-based video reconstruction methods have
been proposed, which help to recover the video by means of an
auxiliary modality signal. For instance, Wi2Vi [12] is the pio-
neering work to reconstruct video data using Wi-Fi signals, but it
generates only grayscale videos with blurry targets. Subsequent
work, CSI2Video [13], improved upon this by generating color
video, but its efficacy against complex backgrounds remains
unverified due to its relativity simple and singular background.
Moreover, the granularity of the Wi-Fi signal imposes limita-
tions on the finesse and stability of the video reconstruction. It
is noteworthy that the EM Eye [50] eavesdrops on video data via
the electromagnetic leakage information from the camera. Al-
though EM Eye can reconstruct high-quality grayscale video, its
reliance on the camera’s proper functioning renders it ineffective
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in instances of physical damage to the camera. Consequently,
we propose to reconstruct color surveillance video through the
fine-grained sensing capability of mmWave signals and with the
powerful generative ability of generative models.

VIII. DISCUSSION

Scenario limitation: Our current study focuses exclusively
on the video reconstruction of single-target and fixed-camera
perspectives. Addressing multi-target scenarios involves two
main challenges: 1) multiple targets segmentation and tracking;
and 2) multi-target feature mapping. To tackle the first challenge,
enhancing angular resolution through advanced hardware [51],
[52] and using RF tracking algorithms [43], [53] can effec-
tively segment and track multiple targets. Regarding the second
challenge, we explore using the CustomVideo [54] to create
identity-protected videos that capture the unique features of
each target. Additionally, to differentiate multiple targets wear-
ing identical masks, we plan to integrate behavioral features
such as gait [55], [56] with appearance data, and employing
clustering algorithms to distinguish the features of similarly
masked individuals. Meanwhile, M2 VISION focuses solely on
surveillance cameras with fixed viewing angles. Consequently,
environmental changes are typically minimal within this con-
straint. In our future plans, we aim to leverage the mmWave
radar’s capability to sense static environments. By integrating
the sensed environmental features into a feature fusion module,
we intend to enhance adaptability to dynamic scenarios, such as
moving viewpoints or changing scenes.

Elevation angle resolution: As outlined in Section IV-B, the
COTS single-chip mmWave radar’s limited elevation resolution,
attributed to the sparse vertical array of antennas, restricts its
ability to accurately reconstruct the vertical profile informa-
tion of the target. However, this constraint does not preclude
the extraction of feature maps that encapsulate reflection data
from different parts of the target’s body, because the target’s
reflectance signals are consistently detected by the mmWave
radar and represented in the mmWave heatmap. Like previous
research [33], [42], [43], our approach leverages a deep learn-
ing model to perform further feature extraction from mmWave
heatmaps. The deep learning model’s powerful learning capa-
bilities partially offset the antenna limitations. Moving forward,
we plan to employ more sophisticated hardware, such as cascade
radar [51] or 4D imaging radar [52], along with synthetic aper-
ture radar (SAR) technology at the algorithmic level, to enhance
the elevation resolution of our system.

Reconstructed video quality: The adopted approach currently
entails setting the resolution of the recovered video at 256× 256
to alleviate computational and time overhead. However, for
subsequent investigations, we contemplate the possibility of
augmenting the resolution of the generated video either through
network structure modifications or the incorporation of a super-
resolution technique [57]. Moreover, our present method relies
on frame-by-frame reconstruction, leading to potential discon-
tinuities between individual frames. To address this concern in
forthcoming studies, we envision employing video generation
models [58] to generate videos directly.

Occlusion limitation: In the current experiments, we verified
the recoverability of M2 VISION in the case of thinner, non-
metallic obstacles due to the limited penetration capability of
the high-frequency (77-81 GHz) mmWave radar we used. To
improve the penetration through thicker obstructions such as
walls in future studies, the use of lower frequency radars or
ultra-wideband (UWB) radars could be considered. Moreover,
integrating mmWave radar with additional sensors, such as
acoustic sensors, through data fusion techniques could enhance
our system’s effectiveness against more substantial obstructions.

IX. CONCLUSION

In this paper, we propose M2 VISION, the first mmWave-based
surveillance video reconstruction system used to enhance exist-
ing video surveillance systems. We propose a series of signal
processing algorithms to obtain mmWave heatmaps that respond
to the target’s profile and motion information. In addition, we
design the mm2Video generative network, which efficiently
fuses mmWave heatmaps with previously acquired vision data,
and recovers the surveillance video based on the fused features
through a cGAN-based generator. Extensive evaluations in var-
ious scenarios show that M2 VISION achieves an average SSIM
of 0.93, which demonstrates its potential to be widely deployed
in future surveillance systems.
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