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ABSTRACT
Radio Frequency (RF)-based gait recognition has emerged as a
promising technology to authenticate individuals in a pervasive
and unobtrusive way. However, a fundamental challenge remains
in collecting extensive data of the same user in the same environ-
ment. To address this challenge, this paper introduces XGait, a
cross-modal gait recognition framework that does not require the
prior deployment of RF devices or explicit data collection. The key
idea is to leverage the signals of the Inertial Measurement Unit
(IMU), which is widely available in modern mobile devices, to sim-
ulate the RF signals that would be generated if the same person
walked near RF devices. Despite the straightforward idea, several
technical challenges need to be addressed due to the diversity of
RF devices, the intrinsic difference between IMU signals and RF
signals, and the complexity of gait. First, we propose an RF spectro-
gram generation method to consistently extract essential RF gait
data features across different RF signals. Secondly, we propose a
generative network-enabled IMU-to-RF translation approach that
accurately converts IMU data to RF data. Finally, we design an RF
gait spectrogram-specific transformer model to further improve the
recognition performance. We conduct a comprehensive evaluation
of XGait, involving thirty subjects in three different environments,
utilizing three RF devices and seven mobile devices. Experimen-
tal results show that XGait consistently achieves over 99% Top-3
accuracy in various scenarios.
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1 INTRODUCTION
1.1 Background and Motivation
Radio Frequency (RF)-based gait recognition has attracted extensive
attention due to its ability to authenticate individuals in a non-
intrusive and device-free manner. This technology exploits the fact
that each person has a unique walking pattern, and RF signals
can capture these differences. The applications of RF-based gait
recognition include smart buildings, personalized services, and
monitoring/surveillance applications [10]. Numerous studies have
explored the potential of different RF signals, such as Wi-Fi [70, 74,
81] and mmWave [42, 68].

Despite its promise, RF-based gait recognition, like many other
RF-based sensing tasks, faces a fundamental limitation that ne-
cessitates extensive training using prior instances of individuals
walking in the same area [51, 57, 70, 81]. This constraint poses
challenges for the practical implementation of this technology in
real-world applications. For instance, in monitoring or surveillance
scenarios, an RF-based gait recognition system may struggle to
accurately identify individuals who have not previously walked
in the monitored area and undergone on-site registration. To ad-
dress this issue, recent works have explored the use of few-shot
learning and domain adaptation to alleviate the burden of training
data, primarily focusing on minimizing the required training in-
stances [11, 13, 21, 50, 58, 73]. Although they have shown promising
results, it is important to note that they still require prior RF data
collection with two key limitations: 1) the deployment of RF devices
in the data collection area, and 2) users visiting the target area to
pre-collect a few instances.

This paper explores a novel approach that fundamentally dif-
fers from existing RF-based sensing applications, particularly in
gait recognition, as it eliminates the need for prior RF data collec-
tion. Inspired by the recent success of deep generative models (e.g.,
ChatGPT), we aim to explore the feasibility of utilizing alternative
sensing modalities to eliminate the need for data collection. Tra-
ditional gait recognition methods primarily rely on three sensing
modalities: RF [57, 68, 70], camera [6, 36, 38], and wearable sen-
sors [17, 56, 62]. This motivates us to leverage video and wearable
sensor gait signals to generate RF gait signals. While the idea of
using video footage to generate RF gait signals has been proposed
in XModal-ID [33], we found that wearable sensors offer several
advantages over video in this context for the following reasons.
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Figure 1: An application scenario of XGait. Users can leverage their
mobile devices for gait registration, while performing gait recognition in
various contexts equipped with an RF-based gait recognition system.

Firstly, video-based methods still require the deployment of a cam-
era in the data collection environment. Secondly, videos shot by
cameras are known to be affected by several practical factors, such
as occlusion, lighting conditions, and viewpoint, which can intro-
duce instability in the generated RF signals. In addition, privacy
concerns arise when implementing video recording for gait anal-
ysis. In contrast, the Inertial Measurement Unit (IMU) has been
widely equipped in everyone’s mobile devices, such as smartphones
and smartwatches. Moreover, utilizing IMU sensors that are read-
ily accessible essentially eliminates the cost of device deployment.
Lastly, since walking is a daily activity, gait data can be measured
in daily life without explicitly asking the users to participate in
data collection. A recent study [3] involving 717,527 individuals
across 111 countries indicates that people, on average, walk about
3,000 steps per day, presenting huge opportunities for data collec-
tion. Fig. 1 illustrates a practical application scenario in two parts.
Initially, users can register their gait information by walking any-
where while holding their smartphones, enabling the collection of
IMU data associated with their unique gait patterns. The approach
of utilizing IMU embedded in mobile devices for gait data collection
facilitates spontaneous, implicit, and low-effort data collection.

One may ask “Since IMU-based gait recognition has been well
studied, why do we still need to translate IMU data into RF data,
which seems unnecessary?” Indeed, there is a rich body of studies on
IMU-based gait recognition [9, 64, 77], but they are mainly designed
to authenticate the user who is using the wearable device. As such,
they are not applicable to ubiquitous and device-free scenarios,
such as user recognition in a smart space. This motivates us to
harness the unique strengths of IMU-based solutions to offset the
limitations intrinsic to RF-based methods. More specifically, our
approach seeks to leverage IMU signals, simulating the RF signals
that would be produced if the same person were to walk near RF
devices, thereby facilitating a more efficient collection of RF data.
1.2 Challenges and Contributions
We need to address several key challenges to achieve the aforemen-
tioned goal.

Challenge 1: Diversity of RF devices. Various RF signals such
asWi-Fi, mmWave, and LoRa which operate at different frequencies
and use different modulation technologies have been utilized for
wireless sensing tasks, resulting in unique expressions of sensing

results for gait information. Consistently extracting and represent-
ing essential gait features across different RF signals remains a
challenge. To address this challenge, we examine the fundamental
principles of different RF sensing approaches. We reveal that differ-
ent RF sensing approaches exhibit distinct sensing indicators due to
varying modulation methods. Despite these differences, the consis-
tent principle underlying all approaches is the phase change caused
by human walking, which can be uniformly represented across
different RF signals. Following this idea, we fuse multiple novel
signal processing techniques and a tailored spectrogram generation
method to extract the essential aspects of RF gait data, ensuring
consistency across various RF signals.

Challenge 2: Intrinsic difference between IMU and RF sig-
nals. IMU signals have intrinsically different properties than RF sig-
nals. Firstly, IMU signals are represented as real numbers, whereas
RF signals are represented as complex numbers. Secondly, IMUs
capture inertial forces and rotation of the body when the user is
walking [14], while RF sensing leverages shadowing, diffraction,
reflection, and scattering phenomena exerted by a walking person
on wireless links [55]. To tackle this challenge, we delve into hu-
man gait’s IMU and RF signals associated with human gait. We
employ a theoretical model to investigate the inherent correlation
between them. However, due to the complex nature of human walk-
ing patterns, it is difficult to derive corresponding RF data from IMU
data using mathematical calculations. Thus, built on the strength
of the deep generative model [23, 24], we develop a deep genera-
tive network with a spectrogram fusion module and a spectrogram
translation module, enabling effective conversion of IMU data into
RF data.

Challenge 3: Complexity of gait. Gait recognition, regard-
less of the sensing modality, poses a significant challenge. First,
gait is the coordinated movement of various parts of the body dur-
ing walking, which involves 2 phases (stance and swing phase), 8
events (heel strike, preswing, etc.), and 24 body parts (arm, shoulder,
and leg, etc.) [44]. However, capturing the whole 3D dynamic and
complex locomotion using a single sensing modality is difficult.
Moreover, the high similarity of gait signals among different peo-
ple further hampers the accuracy of gait recognition systems. To
achieve accurate gait recognition, it is crucial to address the limita-
tions of traditional hand-crafted features [33, 57, 78], which fail to
handle the complexity of gait. While the transformer architecture
excels in image-related tasks, its ability to RF gait spectrograms
is limited due to the unique time-frequency representation of gait
signals. Therefore, we propose a spectrogram transformer specifi-
cally designed to handle RF spectrograms for gait recognition. This
model significantly improves accuracy by incorporating critical
components such as shifted spectrogram patches and the locality
self-attention mechanism.

By incorporating the above solutions, we design and implement
XGait, a unified Cross-modal Gait recognition framework that
eliminates the need for prior RF device deployment and explicit
data collection. This advancement pushes the existing RF-based
gait recognition system into practical applications, as demonstrated
in the video [1]. Our extensive evaluation, involving thirty sub-
jects, three environments, three RF devices, and seven mobile de-
vices, demonstrates that XGait achieves an average accuracy of
96.32%, 97.13%, and 93.26% in indoor, outdoor, and through-wall
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settings, respectively. The Top-3 accuracy consistently exceeds 99%
in cross-registration and recognition scenarios, demonstrating the
robustness of XGait. Our contributions are summarized as follows:

• To the best of our knowledge, XGait is the first cross-modal RF
gait recognition framework that requires no RF device deploy-
ment and no explicit data collection, significantly reducing the
burden of data collection in different environments.

• XGait offers dedicated threefold approaches for accurate gait
recognition with different RF signals (i.e., Wi-Fi, LoRa, and mm-
Wave), including a unified spectrogram generation model, a spec-
trogram translation model, and a spectrogram transformer recog-
nition model. These three models address the aforementioned
challenges associated with different RF signals and ensure effi-
cient and accurate gait recognition in cross-modal settings.

• We collect a large dataset to comprehensively evaluate the perfor-
mance of XGait in various scenarios. Experimental results show
XGait achieves an average accuracy of 95.11% across various RF
modalities and mobile devices.

2 RELATEDWORK
Video-based Gait Recognition. Video-based gait recognition has
been widely explored due to their high accuracy [6, 35, 36, 38]. Ex-
amples of suchmethods include silhouette-based approaches, which
involve extracting and analyzing the human silhouette from video
frames to recognize distinctive gait patterns [38]; gait energy image
(GEI) analysis, where gait features are represented as energy images
that capture the spatial distribution of motion energy throughout a
gait cycle [36]. Despite the success of these methods, they exhibit
certain drawbacks, as they are easily influenced by lighting condi-
tions and cannot work effectively under non-line-of-sight (NLoS)
conditions, limiting their applicability.
Sensor-based Gait Recognition. To overcome the limitations of
video-based methods, sensor-based gait recognition approaches
using various sensors [47, 53, 54, 82] are proposed. For example,
Ren et al.[47] proposed a wearable-based method that uses accel-
eration to extract gait patterns from the human body. Wang et
al. [82] presented a gait recognition approach that leverages smart-
phones’ built-in sensors to recognize individuals’ gait patterns in
unconstrained real-world environments. Vera-Rodriguez et al.[54]
explored the use of piezoelectric sensors on the floor to capture
a user’s gait information for user identification. However, these
methods require users to wear additional equipment or install extra
sensors on the floor, which constrains their application.
RF-based Gait Recognition. RF-based gait recognition has gar-
nered significant attention due to its ability to authenticate individ-
uals in a non-intrusive and device-free manner. Most RF-based gait
recognition methods are based on Wi-Fi channel state information
(CSI) [33, 51, 57, 61, 70, 81]. For example, WiFiU [57] proposes a
method to extract physical features from CSI spectrograms and
uses autocorrelation methods to eliminate feature imperfections.
XModel-ID employs video to generateWi-Fi signals, which are then
used for similarity comparison. However, the use of video can poten-
tially impair user privacy, as it involves capturing and processing vi-
sual data. Moreover, mmWave Radar-based solutions have attracted
a lot of attention. MU-ID [68] analyzes the mmWave signal of the
range-Doppler domain and extracts features such as step length,

Table 1: Comparison with RF-based methods. ( =High, G#=Moderate,
#=Low.)

System Technology Spectrum Modulation Target area
data collect

Privacy
Preserve

MU-ID [68] mmWave 77-81GHz FMCW Yes G#
GaitCube [42] mmWave 77GHz FMCW Yes G#
mmGaitNet [39] mmWave 77GHz FMCW Yes G#
Wi-FiU [57] Wi-Fi 5GHz OFDM Yes G#
Wi-Fi-ID [74] Wi-Fi 5.19GHz OFDM Yes G#
GaitID [78] Wi-Fi 5.19GHz OFDM Yes G#

GaitSense [79] Wi-Fi 5.825GHz OFDM Yes G#
XModal-ID [33] Wi-Fi 5.18GHz OFDM No #
GaitWay [61] Wi-Fi 5.8GHz OFDM Yes G#
LoGait [16] LoRa Unknown CSS Yes G#

XGait
Wi-Fi 5.18GHz OFDM No G#

mmWave 77GHz FMCW No G#
LoRa 915MHz CSS No G#

period, and speed for multi-person identification. GaitCube [42]
analyses the 3D joint-feature representation of mmWave signal over
time to achieve gait recognition. In addition, LoGait [16] uses LoRa
signals for user recognition both indoors and outdoors. RFID-based
methods are also explored. For example, RF-Gait [30] identifies a
person through unobtrusive gait sensing using COTS RFID, while
RFPass [7] can achieve environment-independent gait-based user
authentication. However, RFID-based methods necessitate extra
tags, potentially impairing user convenience and impeding their
widespread adoption. Although various solutions are currently
available, as shown in Tab. 1, none can eliminate the user registra-
tion in the target area, which restricts the deployment of RF gait
recognition systems. Thus, we design XGait to achieve unified RF-
based gait recognition that does not require the prior deployment
of RF devices or explicit data collection.

3 PRELIMINARIES
In this section, we first elucidate the sensing preliminary of three
prevalent RF signals (i.e., LoRa, Wi-Fi, and mmWave). Then, we
analyze the human gait principle and the correlation between the
RF signal and the IMU signal.

3.1 RF Sensing Preliminary
Phase change demonstrates high sensitivity to target motion in
various studies [26, 71, 72]. In contrast, the signal amplitude is less
sensitive, making it less desirable. Thus, the phase change is used
for RF gait sensing in our system.

3.1.1 LoRa Sensing. LoRa utilizes Chirp Spread Spectrum (CSS)
modulation to encode data with frequency-varying chirps. The
received LoRa signal can be categorized as static path signals 𝐻𝑠
from static object reflections and line-of-sight (LoS) signals, and
dynamic path signals 𝐻𝑑 generated by target movement. As the
target moves, the dynamic path signals 𝐻𝑑 undergo a rotation
relative to the static path signal 𝐻𝑠 , leading to a phase change in
the combined signal𝐻𝑐 . However, random phase shifts from factors
like carrier frequency offsets (CFO) and sampling frequency offsets
(SFO) can corrupt the signal’s phase. To address the random phase
offsets, we remove the varying random phase offsets by calculating
the ratio of two signals received at the two antennas [72] as

𝑅𝐹1 (𝑡 ) =
𝐻1 (𝑡 )
𝐻2 (𝑡 )

=
𝑒𝜙𝑜 (𝐻𝑠1 (𝑡 ) +𝐻𝑑1 (𝑡 ) )
𝑒𝜙𝑜 (𝐻𝑠2 (𝑡 ) +𝐻𝑑2 (𝑡 ) )

, (1)
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where 𝐻1 (𝑡) and 𝐻2 (𝑡) are the signals received at two antennas.
The phase offsets 𝑒𝜙𝑜 are removed by the division.

3.1.2 Wi-Fi Sensing. Wi-Fi communication utilizes Orthogonal
Frequency Division Multiplexing (OFDM) to encode digital data
across multiple subcarriers. Additionally, CSI serves to character-
ize the attenuation, fading, and scattering effects experienced by
OFDM signals as they propagate through the environment [28, 29].
Analogous to the LoRa signal, the received Wi-Fi CSI consists of
both static path signals 𝐻𝑠 and dynamic path signals 𝐻𝑑 . Neverthe-
less, the inherent limitations of commercial Wi-Fi devices introduce
certain imperfections in the retrieval of real-world CSI. Specifically,
these imperfections manifest as random phase shifts within the
acquired CSI data, thereby rendering the phase value unreliable
and unusable. Therefore, the CSI ratio [71] is used to eliminate
these random phase shifts, which is defined as the division of CSI
between two antennas:

𝑅𝐹2 (𝑡 ) =
𝐻 ′

1 (𝑡 )
𝐻 ′

2 (𝑡 )
=

𝑒𝜙
′
𝑜

(
𝐻 ′
𝑠1 (𝑡 ) +𝐻 ′

𝑑1 (𝑡 )
)

𝑒𝜙
′
𝑜

(
𝐻 ′
𝑠2 (𝑡 ) +𝐻 ′

𝑑2 (𝑡 )
) , (2)

where 𝐻 ′
1 (𝑡) and 𝐻

′
2 (𝑡) are CSI received at two antennas, and 𝑒𝜙 ′

𝑜

is the varying phase offsets.

3.1.3 mmWave Sensing. For Frequency Modulated Continuous
Wave (FMCW) mmWave radar systems, the chirp signal is utilized,
wherein the frequency of the transmitted signal increases linearly
with time [8, 46]. The transmitted chirp signal can be expressed as
𝑠𝑇 (𝑡 ) = 𝐴 cos

[
2𝜋

(
𝑓0𝑡 + 𝑆𝑡2

2

)]
, where 𝑓0 is the starting frequency and

𝑆 is the frequency modulation slope. The received chirp signal is
essentially a time-delayed version of the transmitted signal, given
by the expression 𝑠

𝑅
(𝑡 ) = 𝛼𝐴 cos

[
2𝜋

(
𝑓0 (𝑡 − 𝜏 ) + 𝑆 (𝑡−𝜏 )2

2

)]
, where 𝛼 is

the path loss, 𝜏 = 2𝑑/𝑐 is the time delay, 𝑑 is the target distance,
and 𝑐 is the speed of light. Then, the transmitted signal is mixed
with the received signal to obtain the Intermediate Frequency (IF)
signal. Though we process the IF signal subsequently to perform
various sensing tasks, the movement target is essentially sensed
by measuring the phase change between transmitted and received
chirp signals:

Δ𝜙 =
4𝜋Δ𝑑
𝜆

=
4𝜋𝑣𝑇𝑐
𝜆

, (3)

where 𝑣 is the target velocity, 𝑇𝑐 is the chirp duration, and 𝜆 is the
wavelength.

3.2 Understaning Human Gait
Gait is characterized by a combination of various locomotive pat-
terns exhibited by distinct body segments. These diverse ambula-
tory characteristics originate from the unique interactions among
specific body components, such as arms, torso, and legs, which
operate at different velocities for each individual, leading to a wide
range of walking patterns, such as variations in walking speed,
stride length, and arm swing [41]. These factors collectively con-
tribute to the distinctive gait characteristics of each individual. In
the upper portion of Fig. 2, a moving wheel from left to right is ap-
plied to human gait. We imagine a cyclic pattern of movement that
is repeated continuously, step by step. Descriptions of walking are
typically confined to a single cycle, assuming that successive cycles
are nearly identical. Although not strictly accurate, this assumption
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Figure 2: Gait cycle and the corresponding RF spectrograms calcu-
lated from different sensing modalities.

is reasonable for most individuals [44]. By convention, the cycle
begins when one of the feet makes contact with the ground.

Phases. The gait cycle consists of two phases: the stance phase
and the swing phase. During the stance phase, the foot is in contact
with the ground, while in the swing phase, that same foot loses
contact with the ground as the leg swings forward in preparation
for the subsequent foot strike. Note that while Fig. 2 refers to the
right body side, the same terms apply to the left side, which is
typically half a cycle behind. Hence, the first double support for
the right side corresponds to the second double support for the left
side, and vice versa.

3.3 Correlation Analysis
IMU. As mentioned in Sec. 3.2, gait characteristics emerge from
the distinct interactions among specific body components. Each in-
dividual operates these components at varying velocities, resulting
in diverse walking patterns. Consequently, the IMU data from an
on-body mobile device, denoted as 𝐼 (𝑡), collected during walking,
is a composite representation of the accelerations experienced by
different human body segments. This can be expressed as

𝐼 (𝑡 ) =
∑︁
𝑛

ℎ𝑛 (𝑎𝑛 (𝑡 ) ) , (4)

where 𝑎𝑛 (𝑡) is the acceleration of the 𝑛th body part at time 𝑡 , and
ℎ𝑛 (·) represents the transfer function that maps the acceleration
caused by the movement of each body part to the on-body device.

RF. As discussed in Sec. 3.1.1, the movement of human walking
can result in phase changes of the RF signal. Although different RF
signals have different expressions, human movement is reflected in
the phase change of the RF signal. Therefore, we canmathematically
represent the RF signal changes caused by the user walking:

𝑅𝐹 (𝑓 , 𝑡 ) = 𝐻𝑠 (𝑓 , 𝑡 ) +
∑︁
𝑛

𝐴𝑛 (𝑓 , 𝑡 )𝑒− 𝑗 ( 2𝜋
𝜆

(𝑑𝑛0+𝑎𝑛 (𝑡 ) ·𝑡2 ) ) . (5)

In this equation, 𝐻𝑠 (𝑓 , 𝑡) denotes the complex static path signal,
𝐴𝑛 (𝑓 , 𝑡) represents the amplitude of the dynamic path signal re-
flected off the 𝑛th body part, 𝑑𝑛0 is the signal propagation length at
time 𝑡 = 0, and 𝑎𝑛 (𝑡) is the acceleration of the 𝑛th body part. Let
𝑅(𝑡) represent the magnitude square of the baseband signal 𝑅𝐹 (𝑡).
Assuming that |𝐻𝑠 (𝑓 , 𝑡) | ≫ |𝐴𝑚 (𝑓 , 𝑡) |, we can express 𝑅(𝑡) as

𝑅 (𝑡 ) = 𝑃 +
∑︁
𝑛

𝐵𝑛 cos
(
2𝜋
𝜆

(𝑑𝑛0 + 𝑎𝑛 (𝑡 ) · 𝑡2 ) − 𝜙𝑠
)
, (6)
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where 𝑃 = |𝐻𝑠 (𝑓 , 𝑡) |2 +
∑
𝑛 |𝐴𝑛 (𝑓 , 𝑡) |2 refers to the DC component

of 𝑅(𝑡), 𝐵𝑛 = 2 |𝐻𝑠 (𝑓 , 𝑡) · 𝐴𝑛 (𝑓 , 𝑡) |, and 𝜙𝑠 is the phase of the com-
plex static path signal. Eq. 6 shows that the received RF signal can
be viewed as a superposition function, with the acceleration of each
body part acting as the independent variable. As a result, the RF
signal contains a variety of frequency components, stemming from
the unique acceleration profiles of different body parts.

Correlation. As indicated by Eq. 4 and Eq. 6, 𝐼 (𝑡) encompasses
frequency components that either overlap or closely correspond
to the frequencies present in 𝑅(𝑡). As demonstrated in Fig. 2, we
present the processed RF and IMU spectrograms for two gait cycles
of the same individual, showing that different gait events (e.g., ini-
tial contact, feet adjacent, and toe-off) induce correlated changes in
RF and IMU spectrograms. This empirical evidence further substan-
tiates the observed correlation between these two modalities. Given
that both are defined by functions with acceleration as the indepen-
dent variable, there exists a possibility of converting IMU data into
RF data through a non-linear function F (·), as represented by the
following equation:

𝑅 (𝑡 ) = F(𝐼 (𝑡 ) ) . (7)

However, accurately obtaining the precise form of the function F (·)
using traditional mathematical approaches is difficult. This is due
to the intrinsic complexity and non-linearity of the transformation
between the IMU and RF data, along with the influence of factors,
such as noise, signal attenuation, and multi-path effect [2, 77]. In
this work, leveraging the remarkable non-linear fitting capabilities
of deep learning, we train a deep generative model to establish this
non-linear mapping relationship from the IMU data to the RF data.

4 SYSTEM OVERVIEW
Fig. 3 shows XGait’s overview, comprising three phases.
User Registration. In the user registration phase, the user uses
his/her on-body smart device such as a smartphone and smartwatch
to collect IMU gait data when he/she is walking. The collected IMU
data is processed by independent component analysis (ICA), maxi-
mal overlap discrete wavelet transform (MODWT), and short-time
Fourier transform (STFT) to yield multiple time-frequency spec-
trograms. Subsequently, the trained spectrogram fusion network

is utilized to fuse all spectrograms into a single feature map. The
trained generator is then employed to reconstruct the RF spectro-
gram. Finally, the generated RF spectrograms are used to train the
gait recognition model.
IMU-to-RFTranslation.Wedesign a deep generativemodel called
Spec2spec to transform the IMU data into RF data. The IMU data
is first processed to obtain corresponding time-frequency spec-
trograms using MODWT and STFT, and the specially designed
spectrogram fusion module then combines multiple IMU spectro-
grams. For RF data, the raw data is initially converted into relevant
sensing indicators and transformed into spectrograms through the
spectrogram generation method. Finally, a spectrogram translation
module is employed to convert the IMU data to RF data.
Gait Recognition. Registered users can use the RF-based gait
recognition system directly without on-site registration. The system
first processes the RF gait data to get the corresponding spectrogram
and recognizes users using the designed spectrogram transformer.

5 SPECTROGRAM GENERATION
5.1 RF Spectrogram Generation
5.1.1 LoRa Signal. As discussed in Sec. 3.1.1, the raw LoRa phase
is unsuitable for use due to random phase discrepancies. Therefore,
the phase ratio is employed to generate the LoRa gait spectrogram.
Initially, we employ the median filter and the Hampel identifier [43]
to eliminate outliers that deviate significantly from the expected
values. After that, recognizing the inherent advantages of multi-
scale analysis and the attainment of optimal frequency and time
domain resolution, the MODWT [45] is implemented to further
mitigate residual noise present in the preprocessed denoised sig-
nal. Specifically, the preprocessed denoised signal is subjected to
a decomposition process, resulting in the acquisition of approxi-
mation coefficients 𝛽 and detail coefficients 𝛼 . The approximation
coefficients 𝛼 (0,𝑘) for scale 0 is calculated as

𝛼 (0,𝑘 ) = 1
√
𝑁

𝑁 −1∑︁
𝑛=0

𝑥 (𝑛) ·𝜓 (0,𝑛 − 𝑘 ) , (8)

where𝑁 is the length of input signal 𝑥 (𝑛), and𝜓 (0,𝑛−𝑘) represents
the value of the wavelet function at time (𝑛−𝑘) for scale 0. Then the
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approximation and detail coefficients are then calculated iteratively
by the following equations:

𝛼 ( 𝑗 ,𝑘 ) = 1
√
2𝑗

𝑁 −1∑︁
𝑛=0

ℎ ( 𝑗 ,𝑛) · 𝛼 ( 𝑗 − 1, 2𝑘 − 𝑛) ,

𝛽 ( 𝑗 ,𝑘 ) = 1
√
2𝑗

𝑁 −1∑︁
𝑛=0

𝑔 ( 𝑗 ,𝑛) · 𝛼 ( 𝑗 − 1, 2𝑘 − 𝑛) ,
(9)

where 𝑔( 𝑗 ,𝑛), ℎ( 𝑗 ,𝑛) represents the wavelet function of the high-
pass and low-pass filter for scale 𝑗 . We choose the Symlets 4 wavelet
(sym4) and decompose the signal to four levels.

Thereafter, the detail coefficient threshold is applied to each level
to discard the ambient clutter. Finally, a level-dependent reconstruc-
tion is performed using

𝑥 (𝑛) = 1
√
𝑁

𝑁 −1∑︁
𝑘=0

𝛼 ( 𝐽 ,𝑘 ) · 𝜑 ( 𝐽 ,𝑛 − 𝑘 ) +
𝐽∑︁
𝑗=1

𝑁 −1∑︁
𝑘=0

𝛽 ( 𝑗 ,𝑘 ) ·𝜓 ( 𝑗 ,𝑛 − 𝑘 ) , (10)

where 𝜑 (𝐽 ,𝑛) represents the approximation wavelet function for
scale 𝐽 , and𝜓 ( 𝑗 ,𝑛) represents the detail wavelet function for scale
𝑗 . The reconstructed LoRa signal is shown in Fig. 4.

Next, we transform the reconstructed signal into a spectrogram
using STFT, which involves dividing the reconstructed signal into
short overlapping segments and calculating the Fourier transform
for each segment [33, 67]. The STFT coefficient 𝑋 (𝑛,𝑘) at time
index 𝑛 and frequency bin 𝑘 is given by

𝑋 (𝑛,𝑘 ) =
𝑀−1∑︁
𝑚=0

𝑥 (𝑚) · 𝑤 (𝑚 − 𝑛𝐻 ) · 𝑒− 𝑗 2𝜋
𝑁

𝑘𝑚 , (11)

where 𝑥 (𝑚) denotes the reconstructed signal at index 𝑚, 𝑤 (𝑚)
denotes the window function value at index𝑚,𝑀 is the segment
length, and 𝐻 is the hop size.

5.1.2 Wi-Fi Signal. As outlined in Sec. 3.1.2, the Wi-Fi signal en-
counters comparable instances of random phase shifts similar to the
LoRa signal. Consequently, the utilization of the CSI ratio has been
proven to be instrumental in mitigating these random phase shifts.
Drawing upon the approach employed for LoRa phase processing
detailed in Sec. 5.1.1, we first use the median filter and Hampel
identifier for preliminary noise reduction. Since the Wi-Fi signal
contains multiple subcarriers, the different subcarrier wavelengths
lead to different responses to walking movements. Therefore, we
leverage a subcarrier selection method [59] on the preprocessed
data to obtain the subcarrier that best reflects the user’s walking
characteristics. Subsequently, we process the selected subcarriers
usingMODWT to further eliminate noise and reconstruct the signal,
ensuring that it accurately represents the user’s walking charac-
teristics. Finally, we derive the spectrogram of the reconstructed
signal using STFT.

5.1.3 mmWave Signal. As illustrated in Sec. 3.1.3, the IF signal
obtained by mixing is used for sensing human walking. In addition
to the user’s walkingmovements, the IF signal contains a lot of static
noise generated by static objects such as walls, tables, and chairs.
For each frame, we use the average of all IF signals as the static
noise vector and subtract this static noise vector from each IF signal
to obtain the denoised data [66]. Then, we use the range Fast Fourier
Transform (FFT) and Doppler FFT to obtain a Range-Doppler Map
(RDM) for each frame as shown in Fig. 5, which reflects the range
and velocity information of the user while walking in the current
frame. Finally, to obtain the velocity change information during
the walking, we use the following equation [20] to transform the
RDMs of all frames into a 2D time-velocity feature map:

𝑽 (𝑛,𝑖 ) =

∑𝑁𝑅
𝑗=1 [𝑹𝑫𝑴 (𝑛,𝑖 ,𝑗 ) · 𝐵 𝑗 ]

𝑁𝑅

, 𝑖 ∈ [1,𝑁𝐷 ], 𝑗 ∈ [1,𝑁𝑅 ], (12)

where 𝑁𝑅 and 𝑁𝐷 are the Range FFT and Doppler FFT numbers,
𝐵 𝑗 is the range bin index, and 𝑹𝑫𝑴 (𝑛,𝑖 ,𝑗 ) denotes the value corre-
sponding to Doppler bin 𝑖 and range bin 𝑗 in the 𝑛th RDM frame.
As discussed in Sec. 3.1.3, the Doppler FFT responds to changes
in phase difference, which are proportional to frequency. There-
fore, we can derive the normalized frequencies by normalizing the
extracted velocities.

Fig. 6 presents the extracted spectrograms for the three types of
RF signals. Distinct and consistent gait patterns can be observed,
indicating the effectiveness of capturing the user’s gait information.

5.2 IMU Spectrogram Generation
During walking, accelerometer data from a single body location of-
ten combines accelerations from multiple locations (e.g., leg, waist,
arm) [63]. Common mobile device placements include hip, chest,
hand, and wrist. Devices on the body trunk primarily capture gait-
related motion signals, allowing direct use of acceleration readings.
However, devices on swing arms detect mixed gait and arm swing
signals. To extract useful gait information, we must separate leg
and arm swing motion signals. In this paper, we use ICA to sepa-
rate signals from different body sources. Assuming IMU-measured
acceleration 𝐴(𝑡) is a mix of hand-waving and trembling, our ICA
model is expressed as 𝐴(𝑡) = 𝐴 · 𝑆 (𝑡) with mixing matrix 𝐴 and
independent sources 𝑆 (𝑡). FastICA [25] is used to obtain unmixing
matrix𝑊 = 𝐴−1, estimating source signals with 𝑆 (𝑡) =𝑊 ·𝐴(𝑡). We
obtain denoised acceleration by selecting the independent compo-
nent with the lowest dominant frequency [63]. To further mitigate
residual noise, the acceleration data along the X, Y, and Z axes
are decomposed into four levels using MODWT. At each level, a
detail coefficient threshold is applied to discard ambient clutter. The
resulting denoised signals are then reconstructed employing Eq. 10.



XGait: Cross-Modal Translation via Deep Generative Sensing for RF-based Gait Recognition SenSys ’23, November 12–17, 2023, Istanbul, Turkiye

Finally, the three processed IMU signals are employed to derive
three spectrograms using STFT, which are shown in Fig. 7(a)-(c), re-
spectively. The obtained spectrograms from the three directions are
utilized as the inputs of the spectrogram fusion module in Sec. 6.1,
which integrates the gait information to generate RF spectrograms.

6 SPEC2SPEC GENERATIVE NETWORK
This section introduces Spec2spec, a deep generative model de-
signed to convert IMU spectrograms to RF spectrograms. Fig. 3
shows the Spec2spec structure, which consists of a spectrogram
fusion module and a spectrogram translation module.

6.1 Spectrogram Fusion
Conventional image learning networks [22, 52] are designed to
process individual RGB images as input, operating on a single
image basis. However, in spectrogram translation, relying solely
on a single IMU spectrogram may result in the omission of crucial
features, as 3D IMU data encompasses spectrograms from three
directions, each containing gait information. To overcome this issue,
we propose a spectrogram fusion module that combines the three
IMU spectrograms for a more effective representation of gait data.

Standard Convolutional Neural Networks (CNNs) are commonly
employed for image fusion tasks. The core of a CNN is the standard
convolution operation, as illustrated in Fig. 8(b), which can be
described as

𝑌 (𝜎 ) =
∑︁
𝜎 ′ ∈𝑆

𝑋 (𝜎 + 𝜎 ′ ) ∗𝐾 (𝜎 ′ ) , (13)

where𝑌 (𝜎) is the output feature map,𝑋 (𝜎) is the input feature map,
𝐾 (𝜎′) is the convolution kernel, and 𝑆 is the neighborhood around
the pixel 𝜎 . IMU data encompasses a wide range of information
relating to signal frequency and motion intensity, which can vary
rapidly across time. Moreover, the frequency spectrum shapes of
different subjects’ IMU data are highly diverse. These factors make
effectively modeling and extracting features from IMU data [37, 69]
a challenge.

To tackle the above challenge, we develop a Deformable Convo-
lutional Network (DCN)-based spectrogram module, as illustrated
in Fig. 8(a). This module combines the three IMU spectrograms by
employing a deformable convolution operation, shown in Fig. 8(c).
By introducing an offset Δ𝜎′ to the regular grid sampling locations,
the module allows for more flexible feature extraction and enhanced
modeling of the features in the IMU spectrograms:

𝑌 (𝜎 ) =
∑︁
𝜎 ′ ∈𝑆

𝑋 (𝜎 + 𝜎 ′ + Δ𝜎 ′ ) ∗𝐾 (𝜎 ′ ) , (14)

where Δ𝜎′ is the offset for the pixel 𝜎′. The offsets are learned
during the training, allowing the model to adapt to geometric vari-
ations and focus on frequencies at different timescales. The offsets
are predicted by another convolutional layer:

Δ𝜎 ′ = 𝐹offset (𝑋 ,𝐾offset ) , (15)

where 𝐹offset represents the offset layer, and 𝐾offset is the kernel
for the offset layer. To handle irregular grid sampling locations, a
bilinear interpolation is used:
𝐼𝑛 (𝜎 ) =

∑︁
𝜅∈𝑁 (𝜎 )

𝑋 (𝜅 ) ∗𝑚𝑎𝑥 (0, 1 − |𝜎𝑥 − 𝜅𝑥 | ) ∗𝑚𝑎𝑥 (0, 1 − |𝜎𝑦 − 𝜅𝑦 | ) , (16)

where 𝐼𝑛(𝜎) is the interpolated value at location 𝜎 , and 𝑁 (𝜎) is the
set of nearest neighbor pixels around location 𝜎 . Combining the
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Figure 8: Illustration of the deformable convolution.

deformable convolution with the bilinear interpolation, we get the
final formula:

𝑌 (𝜎 ) =
∑︁
𝜎 ′ ∈𝑆

𝐼𝑛 (𝜎 + 𝜎 ′ + Δ𝜎 ′ ) ∗𝐾 (𝜎 ′ ) . (17)

The DCN-based spectrogram module takes three IMU spectro-
grams as input and the output is a processed spectrogram of the
same size as the input. The use of learned offsets and bilinear in-
terpolation to handle irregular grid sampling locations enhances
flexibility and adaptation to geometric variations, which is well-
suited for spectrogram fusion.

6.2 Spectrogram Translation
Based on the formulas in Sec. 3.3, it can be inferred that a corre-
lation exists between IMU and RF sensing data for gait. However,
the relationship between them is highly complex, which makes it
challenging to use mathematical calculations to derive. Our goal is
to convert the IMU spectrograms into a corresponding RF spectro-
gram. To achieve this objective, we design a spectrogram translation
module. The design details are as follows.
Module design. The spectrogram translation module, as depicted
in Fig. 3, relies on a conditional generative adversarial network
(cGAN) architecture [40]. This module takes two inputs for train-
ing: the ground truth signal spectrogram 𝑝 , which corresponds to
RF signals, and the condition spectrogram𝑤 fused from three input
IMU spectrograms. The generator network 𝐺 combines a noise
vector 𝑣 with the condition𝑤 to yield a fake spectrogram𝐺 (𝑣 | 𝑤),
which is one of the inputs to the discriminator network𝐷 . Addition-
ally, 𝐷 receives a second input that combines 𝑝 and𝑤 to represent
the real spectrogram under the condition 𝑤 . During the training
process, 𝐷 learns to distinguish between𝐺 (𝑣 | 𝑤) and the ground
truth spectrogram 𝑝 | 𝑤 , while𝐺 adjusts its parameters to generate
a𝐺 (𝑣 | 𝑤) that can fool 𝐷 .𝐺 learns the mapping from IMU spectral
features to RF spectral features by playing a zero-sum game with
𝐷 . Once the training is complete, the generator 𝐺 can accurately
reconstruct an RF spectrogram using the IMU spectrograms, even
when the sample was not included in the training set.
Generator. We employ the U-Net architecture [48] as the gen-
erator’s network. The U-Net structure is symmetrical, featuring
convolutional layers on the left and upsampling layers on the right.
The upsampling layers decode features to predict pixel labels. The
skip connection is employed to enhance the flow of information
between layers, as illustrated by the gray dashed line in the upper
panel of Fig. 3.
Discriminator. The discriminator is designed with three convolu-
tional layers that work together to process the input spectrograms.
The discriminator examines and classifies each patch within the
spectrogram as either real or fake. The model continuously refines
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Figure 10: Illustration of the generated results.

its ability to discriminate between real and fake patches. Once the
training process is complete, the final output of the discriminator
𝐷 is determined by taking the average of all responses obtained
from a single convolutional pass across the entire spectrogram.
Loss function. To make the reconstructed RF spectrogram more
similar to the ground truth, we define the loss function for the
magnitude spectrogram of generated RF spectrograms and original
RF spectrograms. It can be expressed as

𝐿𝑀 =
𝑀 (𝑡 , 𝑓 ) −𝑀𝑞 (𝑡 , 𝑓 )


1 , 𝑡 ∈ 𝑇 , 𝑓 ∈ 𝐹 , (18)

where𝑀 (𝑡 , 𝑓 ) and𝑀𝑞 (𝑡 , 𝑓 ) represent the magnitude spectrogram
of the generated and original RF signals, and 𝑇 , 𝐹 denote the time
and frequency domain, respectively.
Training. The spectrogram fusion module has one convolution
layer and two deformable convolution layers with a kernel size of
3 × 3 with padding of one. The spectrogram translation module
consists of a generator and a discriminator. The generator has three
downsampling and upsampling operations with concatenation and
the submodules of the generator use a kernel size of 4 × 4, stride of
two, and padding of one. The discriminator has three convolutional
layers with kernel size 1 × 1, followed by a leaky ReLU activation
function and batch normalization. We train each model with 300
epochs with a learning rate of 0.0002 in the first 150 epochs and use
Adam [31] to adaptively adjust the learning rate. Fig. 9 displays the
training progress of various RF signals, demonstrating the efficacy
of the Spec2spec model.

To demonstrate the effectiveness of Spec2spec, we conduct an
experiment using LoRa as an example, as the spectrogram of differ-
ent RF modalities can vary. A participant walks along a path that
perpendicularly intersects the RF link, carrying a smartphone to
capture IMU data. Fig. 10(a) displays the spectrogram obtained from
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Figure 11: Spectrogram transformer.

actual RF data, along with the spectrogram generated from the IMU
data. The obvious similarity between the generated spectrogram
and the real RF spectrogram underscores the accuracy of our pro-
posed approach. Furthermore, Fig. 10(b) presents two generated
spectrograms corresponding to two different users, illustrating that
their gait patterns are distinguishable in the figure.

7 GAIT RECOGNITION
As discussed in Sec. 1, accurate gait recognition is challenging be-
cause of the nature of human walking movements and the high
similarity of different users’ walking patterns. Conventional fea-
ture extraction for gait recognition is achieved manually using
hand-designed operators [33, 57, 78], which are inherently limited
compared to learnable features. Inspired by the transformer archi-
tecture [12, 34] in image-related tasks, we propose a spectrogram
transformer specially designed to handle RF spectrograms for gait
recognition. Using shifted spectrogram patches and a patch embed-
ding layer, the model captures spatial information and inter-patch
relationships, while the locality self-attention mechanism enhances
gait feature extraction by focusing on local spatial relationships. In
gait recognition, we aim to distinguish unique user-specific patterns,
treating each user as a distinct class in a multi-class recognition
problem. The details of our proposed method are as follows.
Shifted spectrogram patch. To overcome the low receptive field
issue in vision transformers [12], we employ shifted spectrogram
patches to enhance spatial information capture. As illustrated in
Fig. 11, we first generate overlapping patches from the input spec-
trogram by shifting it diagonally in various frequency and time
directions.We then concatenate these shifted versions with the orig-
inal spectrogram, providing a comprehensive representation that
includes multiple time-frequency perspectives. Next, we extract
smaller, non-overlapping patches for subsequent processing.
Spectrogram patch embedding layer. This layer transforms
patches into embeddings for subsequent model layers while in-
corporating positional information, enabling the model to compre-
hend patch positions within the input spectrogram. As depicted in
Fig. 11, we first linearly project flattened spectrogram patches into
a lower-dimensional space using a learnable weight matrix. This
reduces computational complexity and memory requirements. Po-
sitional encodings can be generated using sinusoidal functions and
learnable parameters. Combined through element-wise addition,
the resulting embeddings incorporate both patch and positional
information, which is crucial for gait recognition.
Locality self-attention mechanism. To effectively learn input
spectrogram details, we use the locality self-attentionmechanism [34]
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Table 2: Mobile device specifications.

Name CPU Frequency RAM OS IMU Model*

iPhone 13 Pro Max 3.23GHz 6GB iOS 15 BS IMU
iPhone 14 Pro 3.46GHz 6GB iOS 16 BS IMU
Samsung S10 2.84GHz 8GB Android 11 STM LSM6DSO
Nexus 6P 1.95GHz 3GB Android 9 IS ICM40604
Apple Watch S7 1.8GHz 1GB Watch OS 9 Unknown
Huawei Watch GT2 200MHz 32MB Lite OS 11 STM LSM6DSOWTR
Customized Smart Ring 64MHz 64 kB N/A IS MPU9250
* BS: Bosch, STM: STMicroelectronics, IS: TDK InvenSense.

to selectively concentrate on the most relevant spatial information.
Specifically, We first mask the dot product matrix diagonal in self-
attention calculation. This forces the attention module to prioritize
inter-token relations. Then we use a learnable scaling factor, pro-
viding greater flexibility in modulating the softmax function and
adaptively sharpening attention score distribution.

The model architecture consists of two transformer layers, each
featuring 64-dimensional patch projections and four attention heads.
The model is trained for 800 epochs using a learning rate of 0.001
and a weight decay of 0.0001. The transformer and MLP head layers
have hidden units of (128, 64) and (2048, 1024), respectively. To
sum up, our proposed method addresses the data-intensive and
complex training demands of traditional transformer models by in-
corporating essential components, leading to enhanced recognition
capability, as will be demonstrated in Sec. 8.3.

8 EVALUATION
8.1 Experimental Methodology
System implementation. As shown in Fig. 12 (a)–(c), we use
three types of RF devices for data collection. Firstly, the Wi-Fi
setup uses two laptops with Intel 5300 WLAN NICs, operating
on channel 64 at 5.32GHz. The transceivers are equipped with
CSI Tool [19] for CSI data collection, and both transceivers have
three omnidirectional antennas, making a total of 270 data streams.
Secondly, the LoRa system consists of an Arduino Unowith Semtech
SX1276 transmitting at 915MHz with a 125 kHz bandwidth, and
a USRP X310 and GNU Radio-based gateway connected to a data
processing laptop. Lastly, the mmWave implementation features a
77GHz FMCW AWR1642 radar and a DCA1000EVM real-time data-
capture adapter. For IMU data collection, we utilize seven mobile
devices as shown in Fig. 12 (d). The specifications of these devices
are detailed in Tab. 2. The default sampling rates of IMUs are set to
100Hz.
Data collection. To evaluate XGait, we recruited 30 participants
(14 women and 16 men), aged from 15 to 64 and weighing between
45 kg and 85 kg. All participants are healthy and participate in a
series of experiments 1. To assess the spectrogram translationmodel,
we randomly selected 15 participants, eachwalking 30 times in front
1Ethical approval has been granted by the corresponding organization.
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of the three RF devices carrying mobile devices, both indoors and
outdoors. To evaluate the final gait recognition results, we choose
the remaining 15 participants, each performing two separate sets of
walking trials: (1) for registration data collection, they walk 3min
carrying a mobile device in both indoor and outdoor environments
as shown in Fig. 13, and (2) for gait recognition data collection,
they walk 30 times in front of RF devices in indoor, outdoor, and
through-wall as shown in Fig. 13.

8.2 Overall Performance
Overall accuracy. Fig. 14(a) shows the Top-1, Top-2, and Top-3
accuracy of LoRa,Wi-Fi, and mmWave for gait recognition with reg-
istration using IMU. Top-N accuracy measures how frequently the
correct user appears within the top N predictions. The Top-1 accu-
racy for LoRa, Wi-Fi, and mmWave are 96.21%, 92.14%, and 96.97%,
respectively. Similarly, the Top-2 accuracy values are 99.54%, 98.72%,
and 99.98%, and the Top-3 accuracy values are 99.89%, 99.56%, and
100%. These results demonstrate the effectiveness of our system in
recognizing users across various communication technologies. The
high accuracy across all three categories indicates that XGait is
adaptable and performs well regardless of the RF signal being used.
Comparison with baselines.We then compare our system with
three state-of-the-art gait recognition systems, namely i) AGait [65],
an RF-based gait recognition system; ii) Gait-Watch [64], an IMU-
based gait recognition system; and iii) WiFiU [57], an RF-based
recognition system with explicit features. The performance of each
system is fine-tuned to achieve the best results on our dataset.
For RF-based systems, we report the average results under three
different RF conditions. As shown in Fig. 14(b), On average, XGait
performs comparably with the state-of-the-art: it is 1.1% lower than
AGait, 1.3% lower than Gait-Watch, and 2% higher than WiFiU. The
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Table 3: Cross registration and recognition scenario results. ( for
chosen, # for unchosen, I.D.:indoor, O.D.: outdoor, T.W.: through-wall.)

Reg. Sce. Recognit. Sce. Accuracy

RF I.D. O.D. I.D. O.D. T.W. Top-1 Top-2 Top-3

Lo
Ra

 #  # # 96.52% 99.78% 100%
#   # # 97.13% 99.85% 100%
 # #  # 97.56% 99.92% 100%
#  #  # 98.14% 99.92% 100%
 # # #  91.56% 98.31% 99.52%
#  # #  94.21% 99.45% 99.83%

W
i-F

i

 #  # # 92.48% 98.46% 99.41%
#   # # 92.97% 98.52% 99.48%
 # #  # 93.47% 98.76% 99.63%
#  #  # 94.11% 99.45% 99.91%
 # # #  89.56% 98.58% 99.45%
#  # #  89.97% 98.58% 99.52%

m
m
W
av
e

 #  # # 97.52% 99.92% 100%
#   # # 98.12% 100% 100%
 # #  # 98.51% 100% 100%
#  #  # 99.23% 100% 100%
 # # #  94.53% 100% 100%
#  # #  94.99% 100% 100%

relatively lower accuracy of WiFiU can be attributed to its reliance
on traditional machine learning classifiers and manually crafted
RF features. These results demonstrate that XGait can achieve
performance comparable to that of the state-of-the-art systems.

8.3 Micro-Benchmark Evaluation
Generalization ability. We evaluate the system’s adaptability
to various environments and RF modalities. Tab. 3 presents the
recognition performance of XGait under various combinations
of registration and recognition scenarios. The results show that
XGait consistently maintains high accuracy across different sce-
narios, with all Top-3 accuracy values exceeding 99%. We note that
mmWave achieves superior performance due to its short wave-
lengths resulting from the high frequency (i.e., 77 GHz). While
Wi-Fi operates at a higher frequency than LoRa, its performance is
inferior, mainly due to the use of omnidirectional antennas, which
offer expansive coverage but sacrifice focus and precision. To evalu-
ate the adaptability of XGait to different RF modalities, we choose
a model of one RF modality as the baseline, then fine-tune new
models with data from two other modalities through ten epochs
of training. As observed in Fig. 15(a), every modality achieves over
90% accuracy, demonstrating the model’s superior generalization
ability of different RF modalities.
Performance of IMU toRF translation.As illustrated in Fig. 15(b),
we evaluate the performance of the Spec2spec network, which con-
verts IMU spectrograms to RF spectrograms. We employ the widely
used Structural Similarity Index Measure (SSIM) [60] to quantify
spectrogram similarity. The results reveal that the Spec2spec net-
work consistently excels across various RF signals and environ-
ments, achieving 95.18%, 92.98%, and 96.01% similarity for three
RF devices in indoor scenarios, and 97.12%, 93.78%, and 97.34% in
outdoor scenarios. We also evaluate the information loss during
the IMU to RF translation by comparing the Learned Perceptual
Image Patch Similarity (LPIPS) [75] of the generated and true RF
signals. LPIPS is a measure of perceptual similarity between two
images, where a smaller value indicates less loss. The average LPIPS
of the generated RF spectrograms is low at 10.05%, and the stan-
dard deviation is small at 0.94%. This suggests that the generative
model tends to produce samples that closely resemble the true RF

signals, resulting in a low and consistent level of information loss.
These promising results highlight the effectiveness of our IMU to
RF translation method.
Impact of walking range. Fig. 15(c) demonstrates the effect of
accumulated walking range on XGait’s performance, showcasing
accuracy from 1m to 10m. We notice that accuracy improves as the
walking range increases. Specifically, the average accuracy rises
by 29.85% and 5.34% when walking range expands from 1m to
5m and from 5m to 10m, respectively. This occurs because longer
walking distances capture more information about a person’s gait,
resulting in higher recognition accuracy. Furthermore, we observe
that the mmWave radar achieves the highest accuracy within 7m,
while LoRa excels beyond 7m. This is due to the mmWave radar’s
superior short-range sensing capacity, which stems from its high
frequency (i.e., 77GHz) causing increased attenuation and suscepti-
bility to objects. In contrast, LoRa performs better at longer ranges
because of low frequency (i.e., 915MHz) causing increased attenua-
tion and longer sensing range. Wi-Fi achieves lower accuracy in
gait recognition primarily due to the use of omnidirectional anten-
nas, which offer wider coverage at the expense of reduced focus
and precision. In summary, Fig. 15(c) emphasizes XGait’s superior
gait recognition performance across various walking ranges.
Impact of group size. We evaluate the impact of group size on
average recognition accuracy using various RF signals in XGait. As
shown in Fig. 15(d), we can see that the accuracy decreases with
larger group sizes. Specifically, it drops by 2.33% and 3.41% as group
size rises from 5 to 10 and 10 to 15, respectively. This is due to the
increased difficulty of distinguishing individuals in larger groups.
However, XGait achieves 95.11% accuracy even with a group size
of 15, illustrating its robustness. In summary, the results reveal
XGait’s strong performance across diverse group sizes.
Impact of Spec2spec generative network. Figure 15(e) demon-
strates the impact of the Spec2Spec generative network by compar-
ing the accuracy of using Spec2Spec, UNet [80], and pix2pix [27]
in different scenarios. It is evident that Spec2Spec outperforms the
other models in all three settings. In particular, compared to UNet,
accuracy increases by 9.87%, 8.31%, and 6.62% for indoor, outdoor,
and through-wall scenarios, respectively. In contrast to pix2pix,
accuracy increases by 7.67%, 6.51%, and 5.12%. These results em-
phasize Spec2Spec’s efficacy in IMU-to-RF translation, resulting in
enhanced performance in various environments.
Impact of spectrogram transformer. We evaluate the impact
of the proposed spectrogram transformer model by comparing the
accuracy of the vision transformer (ViT) [12], residual network
(ResNet) [22], and XGait under indoor, outdoor, and through-wall
settings. Fig. 15(f) illustrates the performance differences between
different recognition models in various environments. Specifically,
the average accuracy of XGait outperforms ViT and ResNet by
8.43% and 11.01%, respectively. This result indicates the XGait’s ef-
ficacy in capturing features for improved recognition performance.
Impact of registration duration. We evaluate the impact of
user registration duration on recognition accuracy. As shown in
Fig. 15(g), we observe that accuracy improves with increasing du-
ration. Specifically, the average accuracy increases by 64. 21% and
3. 68% when the duration extends from 20 s to 80 s and from 80 s
to 180 s, respectively. This is due to the longer duration providing
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(f) Impact of spectrogram transformer.
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(h) Impact of sampling rate.
Figure 15: Experimental results.

W1: smartwatch
(left wrist) 

S2: smartphone
(chest pocket) 

W2: smartwatch
(right wrist) 

S3: smartphone
(hip pocket) S4: smartphone

(buttock pocket) 

R1: smart ring
(finger)

S1: smartphone
(hand) 

Figure 16: Device
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Figure 17: Impact of device positions.
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Figure 18: Impact of temporal variability.

more data for training the recognition model. We choose 80 s as it
strikes a balance between performance and efficiency.
Impact of sampling rate. In the evaluation, we investigate the im-
pact of sampling rate on the accuracy of XGait recognition results,
showcasing results for 10Hz, 50Hz, and 100Hz sampling rates. As
shown in Fig. 15(h), the accuracy decreases by about 2.24% when
the sampling rate is reduced from 100Hz to 50Hz, and it drops
more significantly by approximately 8.89% when further lowered
to 10Hz. This substantial decline can be attributed to the loss of
crucial human gait information at lower sampling rates, which
compromises recognition performance. Based on these findings, it
is recommended to use a sampling rate of 50Hz or higher to ensure
accurate results in gait recognition systems.
Impact of device positions. Then, we explore how device po-
sitions affect the performance of XGait. We present findings for
seven distinct body parts, such as wrist, chest, hip, buttock, hand,
and finger, with positions shown in Fig. 16. The left arm remains

stationary to simulate the scenario of a person walking while hold-
ing a smartphone, while the right armmoves naturally. As shown in
Fig. 17, devices on the right waving arm yield lower accuracy com-
pared to devices on the body and the non-waving arm. Our results
are consistent with prior research [64], which can be intuitively
understood since devices on the body’s core register acceleration
more consistently than those on moving limbs. This is due to the
predominant role of the torso in human gait, while arm movements
primarily serve to maintain balance and can vary without signifi-
cantly affecting a person’s normal walking pattern. These results
demonstrate promising accuracy across various device positions.
Impact of temporal variability. Human gait exhibits slight vari-
ations over time, necessitating the evaluation of XGait’s perfor-
mance in a time-varying context. For this study, we recruited three
participants who registered with a smartphone on the first day.
Subsequently, we tested the recognition accuracy of these partici-
pants every five days for a month. In each scenario, we collected
20 minutes of walking data from the users. As depicted in Fig. 18,
the accuracy declines as time progresses. Specifically, the average
accuracy decreases by 2.31% and 4.24% when the duration extends
from day 1 to day 15 and from day 15 to day 30, respectively. This
decline can be attributed to the slight changes in the biological
factors affecting the users’ gait over time. However, even after 30
days, the accuracy remains at 89.69%, indicating XGait’s robustness
despite the temporal variability in human gait. For continual per-
formance, considering the evolving nature of gait data distribution,
strategies such as periodic retraining or online learning techniques
can be used [4].

8.4 Discussion
User feedback.We assessed XGait’s usability with 100 subjects
answering six SUS-derived questions [5] on ubiquity, security, pri-
vacy, efficiency, accuracy, and user-friendliness. Before proceeding
with our usability assessment for XGait, we obtained informed
consent from all 100 subjects. The questions were: (1) I believe the



SenSys ’23, November 12–17, 2023, Istanbul, Turkiye Yang et al.

1-3

8.0%4-6
11.0%

7-10

81.0%

Ubiquity
1-3

3.0%4-6
19.0%

7-10
78.0%

Security
1-3

11.0%

4-6
14.0%

7-10
75.0%

Privacy

1-3
21.0%

4-6 14.0%

7-10
65.0%

Efficiency
1-3

5.0%4-6
13.0%

7-10

82.0%

Accuracy
1-3

6.0%
4-6

8.0%

7-10

86.0%

User-friendliness

Figure 19: User feedback results. 100 participants joined the user study,
consisting of six questions with responses from 1 to 10.

application of the method is ubiquitous; (2) I believe the method is
secure; (3) I believe the method is privacy-preserving; (4) I believe
the method is efficient; (5) I believe the method is accurate; and (6)
I believe the method is user-friendly. Participants rated each aspect
on a 1–10 scale. As shown in Fig. 19, XGait received average scores
over eight for all questions. Specifically, the average scores for the
six dimensions are 8.11 ± 2.18, 8.75 ± 1.66, 8.03 ± 2.26, 8.21 ± 1.79,
8.77±1.05, and 8.58±1.32, respectively. Some users raised efficiency
concerns due to the computationally demanding deep generative
model. Overall, XGait has favorable usability.
Privacy concern on IMU data. Despite the promising results of
our system, it is important to address any potential privacy concerns
associated with the use of IMU data. There are indeed privacy risks
tied to the collection of IMU data during the registration process,
such as potential exposure of user inputs like passwords or revealing
speech contents [15, 76]. Nonetheless, our user feedback suggests
an overall positive perception of this approach. Moreover, we aim
to mitigate privacy risks by capturing and processing IMU data only
during walking and with explicit user consent, ensuring our gait
analysis respects user privacy. Furthermore, it is worth noting that
IMU data from built-in sensors is widely regarded as reliable [18]
and is processed locally within a trusted environment [49], without
external sharing.
Handling of non-registered users. While our system is primar-
ily aimed at recognizing registered users based on individual gait
patterns, the handling of non-registered users introduces additional
complexity. Future enhancements could consider incorporating
spoofer detection techniques [32] to improve differentiation be-
tween registered and non-registered users, ensuring the system’s
robustness in various usage scenarios.
Range ability. The utilization of distinct RF antennas can lead to
variations in sensing ranges due to discrepancies in signal-to-noise
ratios (SNR) among different antennas. However, our proposed
solution remains effective for long-range recognition tasks when
combined with a suitable antenna, thereby expanding its potential
application in a broader range of scenarios.

9 CONCLUSION
In this paper, we introduce XGait, the first RF-based gait recogni-
tion system that overcomes the limitations of the prior deployment
of RF devices and explicit data collection by leveraging the built-in
IMUs in mobile devices. This approach enables spontaneous, im-
plicit, and low-effort data collection. XGait incorporates a unified

spectrogram generation model, a spectrogram translation model,
and a spectrogram transformer recognition model to effectively
address the challenges associated with cross-modal settings and
ensure efficient and accurate gait recognition. Our extensive evalua-
tion demonstrates the remarkable performance of XGait, achieving
over 99% Top-3 accuracy across diverse scenarios.
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