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ABSTRACT
Diverse Wi-Fi-based wireless applications have been proposed,
ranging from daily activity recognition to vital sign monitoring.
Despite their remarkable sensing accuracy, the high energy con-
sumption and the requirement for customized hardware modifica-
tion hinder the wide deployment of the existing sensing solutions.
In this paper, we propose REHSense, an energy-efficient wireless
sensing solution based on Radio-Frequency (RF) energy harvesting.
Instead of relying on a power-hungry Wi-Fi receiver, REHSense
leverages an RF energy harvester as the sensor and utilizes the
voltage signals harvested from the ambient Wi-Fi signals to enable
simultaneous context sensing and energy harvesting. We design
and implement REHSense using a commercial-off-the-shelf (COTS)
RF energy harvester. Extensive evaluation of three fine-grained
wireless sensing tasks (i.e., respiration monitoring, human activity
recognition, and hand gesture recognition) shows that REHSense
can achieve comparable sensing accuracy with conventional Wi-Fi-
based solutions while adapting to different sensing environments,
reducing the power consumption of sensing by 98.7% and harvest-
ing up to 4.5mW of power from RF energy.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization→ Embedded and
cyber-physical systems.
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1 INTRODUCTION
Wi-Fi based wireless sensing systems are on the rise, with examples
including health surveillance [1, 2], activity recognition [3], and
gesture recognition [4–6]. Among the existing systems, Channel
State Information (CSI) based design has attracted great attention
due to its promise in achieving fine-grained context sensing and
compatibility with Commercial-Off-The-Shelf (COTS) Wi-Fi de-
vices. However, in the existing Wi-Fi CSI-based sensing works1, we
find that there are two practical limitations that hinder the wide
adoption of Wi-Fi CSI-based sensing solutions.
(I) Customized hardware modification. First, existing CSI-based
sensing systems utilize the Wi-Fi Network Interface Controller
(NIC) card to receive the packets from the target Wi-Fi transmitter
and leverage the CSI tool [7, 8] to extract the wireless channel
information from the NIC. However, not all NIC cards support CSI
extraction. In fact, most of the NICmanufacturers do not provide the
access to CSI information. As a result, we can only leverage a very
limited range of NIC cards to obtain the CSI data for sensing, i.e., the
Intel 5300 card [7] and the Qualcomm Atheros Wi-Fi chipset [8]. As
shown in Figure 1a, our literature survey indicates that 74% of the
investigated CSI-based sensing works utilize the Intel 5300 card [7],
and 22% of them use the Qualcomm Atheros Wi-Fi chipset [8].

Moreover, since most of the CSI-extractable NIC cards are no
longer adopted by the latest Wi-Fi devices, existing solutions have
to compromise the device. This is done by replacing the original
onboard NIC card in the device with a CSI-extractable alternate,
which is not only impractical but also requires additional effort
from the end users. As shown in Figure 1b, 50% of the existing
works need to modify both of the transceivers (Wi-Fi NICs in both
router and mobile device), 38% of them need to modify the receiver,
and the remaining 12% of them require a firmware upgrade.
(II) High power consumption. The second limitation of existing
Wi-Fi CSI-based sensing systems is the high power consumption
of the NICs. Specifically, we investigate the power consumption
of 11 CSI-extractable Wi-Fi NIC cards that are widely used by
existing works 2. Their power consumption is briefly summarized
in Figure 1c. Eight (73%) of them consume approximately 800mW
to 1W when running in the idle receiver mode [9, 10]. Three of
them (27%), i.e., the three Intel Wi-Fi NICs, consume over 2W to
extract CSI information [11]. Due to the high power consumption in
sensing wireless variations, deploying CSI-based sensing solutions
on power-constrained devices, such as battery-powered IoT devices,
becomes extremely difficult in a sustainable smart home.

1Complete list is available at: https://github.com/REHSense/REHSense
2Including the Intel 5300, three Intel AX200 Wi-Fi 6 series cards, and seven Qualcomm
Atheros Wi-Fi chipsets.
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Figure 1: Literature survey on 50 representative CSI-based sensing works: (a)
Wi-Fi NICs in investigated works; (b) Required hardware modifications; and
(c) power consumption of 11Wi-Fi NICs.

To move beyond the current limitations and towards battery-free
sensing, we present REHSense, a novel wireless sensing system
based on RF Energy Harvesting. Specifically, RF energy harvesting
is a passive power scavenging technique that converts ambient
RF energy emitted from mobile devices, such as Wi-Fi routers and
cellular towers, into direct current (DC) voltage signals that can be
used to power electrical components and devices. It has been widely
used in diverse commercial IoT devices, such as LED lights [12],
tiny cameras [13], and self-sustaining sensors [14].
Key insights. Our key observation is that human activity signifi-
cantly affects the amount of energy that the harvester captures from
the ambient RF signals because the signal reflecting off the human
body may superimpose constructively or deconstructively with
multipath signals in the propagation environment at the harvester,
depending on the position and pose of the human. Therefore, in-
stead of purely utilizing it as a humdrum energy source, we propose
to leverage the RF energy harvester as a novel battery-free activity
sensor. Specifically, we measure the time-varying harvested power
(voltage) as the sensing signal and apply a deep neural network to
recognize various human activities. We note that the relationship
between the harvested RF energy and human activities has also
been noticed in prior works [15, 16]. However, we take the first step
towards building battery-free Wi-Fi-based sensing systems using
purely low-cost COTS hardware platforms.

We design and implement REHSense by using a commercial RF
energy harvester, i.e., a Powercast P21XXCSR-EVB power harvest-
ing board [17] and an Arduino Nano microcontroller. We evaluate
REHSense’s performance with data collected from ten participants
with four different COTS Wi-Fi routers in four typical environ-
ments (i.e., home, office, corridor, and cafe). Extensive experimental
results show that REHSense achieves an accuracy of 95.4%, 95.7%,
and 90.8% in respiration monitoring, human activity recognition,
and hand gesture recognition, respectively. Furthermore, we con-
ducted an experiment to compare the sensing accuracy and energy
consumption of our energy-efficient solution with that of conven-
tional sensing solutions using Wi-Fi NIC. The results show that
REHSense achieves a competitive sensing ability while consuming
much lower energy than the CSI-based system. In addition, we
present examples to demonstrate that REHSense can be integrated
into different commodity IoT devices and provide a battery-free
sensing prototype system based on RF energy harvesting.
Contributions. We summarize the following contributions.
• To the best of our knowledge, REHSense is the first practical
energy-efficient Wi-Fi sensing solution, which opens the door
for designing battery-free wireless sensing systems. To provide a
solid basis for future work, we also propose a theoretical model

Figure 2: Workflow of RF energy harvesting.
for describing RF energy transmission in the presence of various
human activities in the Fresnel diffraction zones.
• To support simultaneous energy harvesting and activity sensing,
we design a lightweight pipeline of REHSense that consists of
the hardware platform, signal processing modules, counting al-
gorithms, and CNN-based neural networks. REHSense reduces
the energy consumption of wireless sensing systems by orders
of magnitude while imposing no hardware and firmware mod-
ifications to the existing Wi-Fi infrastructure.
• We design and implement a prototype of REHSense using COTS
hardware platforms. Our extensive experimental results demon-
strate that REHSense achieves high accuracy inmonitoring respi-
ratory rate, recognizing fine-grained human activities, and hand
gestures. Moreover, in a comparison experiment with a conven-
tional CSI-based sensing system, REHSense achieves competi-
tive recognition accuracy across a variety of sensing tasks in the
same scenarios while consuming significantly lower energy.

2 PRELIMINARY
2.1 Primer on RF Energy Harvesting
RF energy harvesting is a passive power scavenging technique
that converts ambient RF energy emitted by high electromagnetic
fields, such as Wi-Fi routers and cellular towers, into direct cur-
rent (DC) that can be used to power sensors and prolong battery
life. As an example, Figure 2 shows a typical workflow of an RF
energy harvesting system. The wireless transmitter (e.g., a Wi-Fi
router) radiates electromagnetic energy to the near-field space [18].
The receiving antenna captures the RF signal and feeds it into an
impedance-matching network that maximizes energy harvesting
efficiency. Then, a rectifier and a voltage multiplier are used to
convert the harvested RF signal into DC voltage. Theoretically, the
transmission of RF energy in free space follows the Friis’ transmis-
sion equation [19] as follows:

𝑃𝑟 = 𝑃𝑡
𝐺𝑟𝐺𝑡𝜆

2

(4𝜋𝑑)2
, (1)

where 𝑃𝑡 , 𝑃𝑟 are the transmitted power and the received power;
𝐺𝑡 , 𝐺𝑟 are the gains of the transmitting (Wi-Fi router) and the
receiving (harvesting device) antennas; 𝜆 is the wavelength; and 𝑑
is the distance between the two antennas. We can further obtain
the gain of free-space RF energy transmission 𝐺𝑎𝑖𝑛𝐹𝑟𝑖𝑖𝑠 as:

𝐺𝑎𝑖𝑛𝐹𝑟𝑖𝑖𝑠 [𝑑𝐵] = 10𝑙𝑜𝑔( 𝑃𝑟
𝑃𝑡
) = 10𝑙𝑜𝑔(𝐺𝑡𝐺𝑟𝜆

2

(4𝜋𝑑)2
), (2)

which describes the Line-of-Sight (LoS) harvested RF energy at
distance 𝑑 between the transmitter and the receiver.

2.2 Modeling Harvested Energy
The Fresnel zone diffraction model has been widely used to analyze
fine-grained activity recognition [3, 20]. The key insight is that
when a target is located inside the Fresnel zones, diffraction domi-
nates and becomes much stronger than other propagation effects
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Figure 3: Illustration of the diffraction model in the FFZ.

(e.g., reflection and scattering). Prior studies [21] [22] have proved
that more than 70% of the RF energy is transmitted in the First
Fresnel Zone (FFZ). Thus, we leverage the Fresnel zone diffraction
model to study the RF energy harvesting voltage signal.
Diffraction model formulation. We first define the boundary of
the 𝑛th Fresnel zone as:

|𝑇𝑥𝑃𝑛 | + |𝑅𝑥𝑃𝑛 | − |𝑇𝑥𝑅𝑥 | =
𝑛𝜆

2 , (3)

where the Wi-Fi router (𝑇𝑥) and the RF energy harvesting device
(𝑅𝑥) are the foci of concentric ellipses and represent the Fresnel
zones, 𝑃𝑛 is the sensing target located at the boundary of the 𝑛th
Fresnel zone (e.g.,𝑛 = 1 represents the FFZ), and 𝜆 is the wavelength
of the RF signal.

Figure 3 illustrates the diffraction model in the FFZ. We assume
the length of the semi-minor axis of the FFZ is 𝑟1, and the sensing
target is walking in the middle of 𝑇𝑥 and 𝑅𝑥 (i.e., 𝑑1 = 𝑑/2 and
𝑟1 =

√︁
𝜆𝑑1/2). The distance from the front and back sides of the

human body to the LoS of the transceivers is ℎ𝑓 𝑟𝑜𝑛𝑡 and ℎ𝑏𝑎𝑐𝑘 ,
respectively. We can also obtain the Fresnel front clearance and the
Fresnel back clearance as𝑢𝑓 𝑟𝑜𝑛𝑡 = ℎ𝑓 𝑟𝑜𝑛𝑡/𝑟1 and𝑢𝑏𝑎𝑐𝑘 = ℎ𝑏𝑎𝑐𝑘/𝑟1,
respectively. Then, we obtain the Fresnel-Kirchhoff diffraction pa-
rameters 𝑣 𝑓 𝑟𝑜𝑛𝑡 =

√
2𝑢𝑓 𝑟𝑜𝑛𝑡 and 𝑣𝑏𝑎𝑐𝑘 =

√
2𝑢𝑏𝑎𝑐𝑘 [3]. Finally, the

amplitude of the RF signals captured by the RF energy harvesting
device, which is subject to the diffraction of the front and back sides
of the human body, can be expressed as:

𝐹 (𝑣 𝑓 𝑟𝑜𝑛𝑡 ) =
1 + 𝑗
2

∫ ∞

𝑣𝑓 𝑟𝑜𝑛𝑡

𝑒
− 𝑗𝜋𝑧2

2 𝑑𝑧,

𝐹 (𝑣𝑏𝑎𝑐𝑘 ) =
1 + 𝑗
2

∫ 𝑣𝑏𝑎𝑐𝑘

−∞
𝑒
− 𝑗𝜋𝑧2

2 𝑑𝑧,

(4)

where 𝑒− 𝑗𝜋𝑧2/2 is the phase shift in the diffraction path 𝑧. When a
human body is inside the FFZ, the total diffraction gain is the sum
of diffraction gains of the front and back sides, which is defined as:

𝐺𝑎𝑖𝑛𝐷𝑖𝑓 𝑓 [𝑑𝐵] = 20𝑙𝑜𝑔
��𝐹 (𝑣 𝑓 𝑟𝑜𝑛𝑡 ) + 𝐹 (𝑣𝑏𝑎𝑐𝑘 )�� , (5)

which describes the increases of harvested RF energy caused by the
human body’s diffraction effect.
Modeling the harvested energy. So far, we have introduced the
free-space gain of RF energy transmission 𝐺𝑎𝑖𝑛𝐹𝑟𝑖𝑖𝑠 and the gain
of Fresnel diffraction 𝐺𝑎𝑖𝑛𝐷𝑖𝑓 𝑓 . In practice, however, there are
many partitions and obstacles that can block the LoS RF energy
transmission, and result in path losses. Thus, we further model the
path loss at a distance 𝑑 as follows:

𝑃𝐿(𝑑) [𝑑𝐵] = 𝑃𝐿(𝑑0) + 10𝑛𝑙𝑜𝑔(
𝑑

𝑑0
) + 𝐹𝐴𝐹 [𝑑𝐵]

+ 𝑝 ∗𝐴𝐹𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 [𝑑𝐵] + 𝑞 ∗𝐴𝐹𝑤𝑎𝑙𝑙 [𝑑𝐵] ,
(6)

where 𝑃𝐿(𝑑0) is the path loss at reference distance (typically, 𝑑0 =
1m), 𝐹𝐴𝐹 is the floor attenuation, 𝑝 and 𝑞 are the number of

soft partitions (i.e., human body) and concrete walls, respectively,
𝐴𝐹𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 and 𝐴𝐹𝑤𝑎𝑙𝑙 are the corresponding attenuation factors,
respectively. In addition, path loss describes the decrease of har-
vested RF energy when the human body totally or partially blocks
LoS RF signal transmissions.

In a nutshell, the energy generated by the RF energy harvest-
ing device is the combination of the path losses 𝑃𝐿(𝑑) and the
two dominant gains, i.e.,𝐺𝑎𝑖𝑛𝐹𝑟𝑖𝑖𝑠 and𝐺𝑎𝑖𝑛𝐷𝑖𝑓 𝑓 . Thus, leveraging
Equation 2, Equation 5 and Equation 6, we can model the harvested
energy and use it to achieve fine-grained activity recognition with-
out the need for the conventional power-hungry wireless receiver.
As shown later in our system profiling (??), the proposed RF energy
harvesting-based wireless sensing consumes only 11.3−12.6mW
power, in contrast to the 820−940mW power consumed by conven-
tional Wi-Fi NIC card. Below, we conduct a preliminary study to
investigate the feasibility of the proposed idea.

2.3 Feasibility Study
We conduct a preliminary study to demonstrate the feasibility of
using energy harvesting for wireless sensing. In this study, we
consider three mainstream wireless sensing tasks: respiration mon-
itoring, human activity recognition, and hand gesture recognition.
For each sensing task, we monitor the voltage signals generated by
an RF energy harvester when a subject is inside the FFZ between
a commodity Wi-Fi router and an RF energy harvesting device
(details of the hardware and setup are shown later in Figure 8).

• Case study 1: Respiration monitoring (RM). The three plots
in Figure 4a are the normalized voltage signals when a partici-
pant is breathing normally in different positions, including lying,
sitting, and standing. The harvested signals show the continuous
rise and fall patterns that correspond to the subtle displacements
of the subject’s chest. Recall our modeling in the previous subsec-
tion, the subtle displacement leads to changes in the diffraction
gain in the FFZ, as well as the harvested RF energy.
• Case study 2: Human activity recognition (HAR). Figure 4b
shows the harvested voltage signals when the person is perform-
ing three daily activities: walk, push-up, and sit-up. The signal
patterns can also be illustrated by the diffraction model in § 2.2.
Taking walking as an example, when the person is approaching
the FFZ, the diffraction gain increases, and hence more RF en-
ergy is captured by the receiver. Then, the person arrives in the
middle of the FFZ, and the human body blocks the LoS energy
transmission which increases the energy of path loss. Finally,
as the person moves out of the FFZ, the harvested RF energy
increases because the energy caused by path loss increases and
the diffraction effect strengthens the harvested RF energy. Using
the same principle, we can explain the patterns exhibited in the
harvested signals of push-ups and sit-ups.
• Case study 3: Hand gesture recognition (HGR). Figure 4c
shows the harvested RF energy signals of three hand gestures:
waving the hand, drawing a circle, and flipping the palm. We ob-
serve that different hand gestures lead to different bursts of cap-
tured RF energy because themoving hand changes the diffraction
gain in the FFZ. Therefore, it is feasible to recognize fine-grained
hand gestures using RF energy harvesting.
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(a) Respiration monitoring. (b) Human activity recognition. (c) Hand gesture recognition.
Figure 4: Feasibility study: harvested voltage signals (normalized) in three wireless sensing tasks.

Figure 5: Overview of REHSense.

The preliminary results from the three case studies above show
that changes in harvested RF energy can reflect human activities
and vital signals such as respiratory rate. Moreover, different hu-
man activities (i.e., walking, push-ups, sit-ups) and human hand
gestures inside the FFZ also present distinct RF energy patterns,
demonstrating the feasibility of harnessing RF energy harvesting
for wireless sensing.

3 DESIGN AND IMPLEMENTATION
3.1 System Overview
Based on the proposed diffraction model and the results of the
feasibility study, we present REHSense, a novel wireless sensing
system via RF energy harvesting. REHSense implements a light-
weight sensing pipeline that supports diverse sensing applications.
We chose to implement three sensing tasks listed in our feasibility
study for two reasons. First, they are the most representative appli-
cations in the wireless human sensing field [23]. Second, they cover
different levels of granularity: respiration monitoring (minor move-
ment), human activity recognition (large-scale movement), and
hand gesture recognition (small-scale movement). Therefore, these
three sensing tasks can demonstrate the potential of REHSense in
enabling various applications for wireless sensing tasks.

Figure 5 depicts the system overview of REHSense, which con-
sists of three components. First, the RF energy harvesting device
captures the RF signals sent by the Wi-Fi router and converts the
RF signals to DC output (time-series voltages). Second, the signal
pre-processing module performs noise cancellation to remove in-
terference, segmentation to obtain segments containing activities
and gestures, and normalization to generate valid input for training
or recognition. Then, the counting algorithm takes the filtered volt-
age signal and outputs the calculated respiratory rate to achieve

respiration monitoring (RM). The pre-trained CNN-based HAR and
HGR classifiers can predict the activities and gestures from the
normalized signal segments, respectively.

3.2 Signal Pre-processing
Noise cancellation. The harvested voltage signal contains noise
that results from other transmitter sources and ambient interfer-
ence. In REHSense, we apply a Savitzky-Golay (S-G) filter [24] for
noise filtering. S-G filter fits successive slices of signal with a low
degree polynomial function to maintain the time and frequency
domain patterns of the time-series signal [25]. Thus, it can effec-
tively remove both high-frequency noise and small variations in the
harvested signal caused by interference from other transmitters.
Signal segmentation.We utilize a variance-based sliding window
(i.e., 0.5 s with a 50% overlapping rate) to divide the time-series volt-
age signal into segments. Specifically, the variance-based sliding
window finds the segmentation points where the variance is lower
than a pre-defined threshold (i.e., 0.1 in our current design). The
threshold is selected when no activity movements are performed,
and the corresponding harvested voltage signal remains constant.
Normalization. According to Equation 1, the distance between the
two antennas affects the strength of the harvested RF energy. To
reduce its impact on activity and gesture recognition, we normalize
the signal segments to the range of [0, 1] by deducting the DC
offset (average voltage where variance is less than 0.01). In addition,
the length of activity/gesture segments is different, so we apply
the down-sampling method to resize the segments with different
lengths to 1× 128 vectors as valid input of the CNN neural network
in both training and testing processes.

3.3 Respiration Monitoring (RM)
In § 2.3, we present that the RF signals of human respiration exhibit
periodic motions that correspond to the rise and fall of the chest.
However, we also find that some voltage spikes overlap together
as the respiratory rate can be fast, and hence the harvested RF
energy is a combination of the neighbor respiration. To address
this overlap issue and achieve accurate respiration monitoring, we
propose a variance-peak counting algorithm (see Algorithm 1) that
can calculate the respiratory rate by a moving-variance window
and peak analysis. Specifically, it first obtains the variance signal by
applying a moving-variance sliding window (Line 2 − 5) and then
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Algorithm 1: Variance-Peak Counting Algorithm
Input: S: filtered harvested voltage signal.

𝑤: moving-variance window size.
𝜏 : given variance threshold.

Output: 𝑟 : calculated respiratory rate.
1 V ← V0 , V0 = 𝜙 {initialize an empty variance array}
2 for 𝑖 = 0; 𝑖 < 𝑙𝑒𝑛 (S) − 𝑤 + 1; 𝑖 = 𝑖 + 1 do
3 V𝑖 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (S𝑖 , S𝑖+𝑤 ) {variance of a window}
4 if V𝑖 ≥ 𝜏 then
5 V ← V𝑖 {append V𝑖 to V}

6 P = 𝑓 𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠 (V) {find peaks in variance signal}
7 Output respiratory rate 𝑟 with 𝑟 = 𝑁P/𝑡S {𝑁P is the number of peaks and

𝑡S is the time duration.}

Figure 6: An example showing the performance of the variance-peak respira-
tion counting algorithm. The number of black asterisks denotes the number
of respiration during the monitoring period.

finds peaks in the variance signal and uses the number of peaks to
calculate the final respiratory rate (Line 6 − 7). In REHSense, we
set the size of the moving-variance window as 100 with a given
variance threshold as 0.002, and use the peak analysis function
provided by the Signal Processing Toolbox of MATLAB (R2022a).

Figure 6 presents an example of applying the variance-peak
counting algorithm to calculate the respiration rate when a person
is lying down on a mat. The upper figure shows the original har-
vested voltage signal and the lower figure presents the results after
applying the proposed algorithm. It can be seen that compared to
the original noisy signal in the upper figure, the peaks that corre-
spond to breathing rate can be easily spotted in the lower figure
after using our algorithm.

3.4 Human Activity and Hand Gesture
Recognition (HAR and HGR)

To determine the type of human activity or hand gesture, we apply
a Convolutional Neural Network (CNN) method to achieve activity
and gesture classification in REHSense. Because CNN-based neural
networks support classic classification models that can extract both
temporal and spatial features from the harvested voltage signals
while achieving high accuracy in class prediction, Figure 7 shows
the architecture of the proposed CNN neural network that consists
of six layers: three convolutional layers for extracting temporal
and spatial features from the one-dimensional signal segments, two
fully connected layers that take the extracted feature vectors to
generalize the neural network and learn the non-linear combina-
tions of these features. At last, a softmax function is utilized in the
classifier to output the predicted activity/gesture type.

Figure 7: Architecture of the CNN neural network.
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Figure 8: Experimental setup and hardware devices.

Specifically, each convolution layer uses ReLU as the activation
function and is followed by a max pooling layer with a pool size
of 2. A flatten layer is used to convert the feature map to a one-
dimensional feature vector, fed into the fully-connected layer. A
dropout layer is used after the first fully-connected layer to avoid
over-fitting, and the dropout rate is set to 0.5. We implement the
proposed CNN model in Keras 2.3 on the Tensorflow 2.0 framework
and train 300 epochs in total with an initial learning rate of 0.01.

4 EVALUATION
4.1 Experimental Setup
Figure 8 shows the experimental environment, setup, and the hard-
ware devices used in the experiments. We use a Xiaomi MI Router
as the transmitter (𝑇𝑥 ) and implement a prototype of RF energy har-
vesting as the receiver (𝑅𝑥 ). In the prototype, we use an RF energy
harvesting evaluation board, Powercast P21XXCSR-EVB [17], with
one 2.4GHz, and one 2.3 dBi dipole antennas to harvest RF energy
from. To record the harvested voltage data, we use an Arduino Nano
microcontroller and a 32GBMicroSD card as the data recorder. The
sampling rate of the data recorder is 200Hz. We consider the ex-
periments in an indoor scenario (e.g., room 5.7m×4.2m) and set
the sensing range between𝑇𝑥 and 𝑅𝑥 to 1.0m and the height of𝑇𝑥
and 𝑅𝑥 to 0.5m. We also place a camera to record the experimental
process, which will be used as a reference to analyze the results. All
data processing and model training are conducted on a desktop run-
ning Windows 10 with 32GB memory and an Intel i7-9700K CPU
and an NVIDIA GeForce RTX 2080Ti GPU. In addition, we conduct
experiments to explore the performance of REHSense in different
settings (i.e., Wi-Fi routers, sensing ranges, environments) in § 4.4.

4.2 Dataset
We recruit ten participants with IRB approval to collect three inde-
pendent datasets for three different sensing tasks: respiration mon-
itoring dataset D𝑅𝑀 , human activity recognition dataset D𝐻𝐴𝑅 ,
and hand gesture recognition dataset D𝐻𝐺𝑅 . The details of data
collection are illustrated below.
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(a) Lying. (b) Sitting. (c) Standing.
Figure 9: Effectiveness of respiration monitoring in three situations.

(a) HAR results. (b) HGR results.
Figure 10: Confusion matrices of the classification results of ten human activities (HAR) and ten hand gestures (HGR).

• D𝑅𝑀 : We ask the participants to breathe naturally in three com-
mon conditions: lying, sitting, and standing. For each participant,
we record the harvested voltage signal in one minute and repeat
this process for ten times (3 × 10 × 10 = 300 minutes respiration
data in total). To obtain the ground truth, each participant wears
a commercial wearable device FLOWTIME headband [26] during
the data collection.
• D𝐻𝐴𝑅 : We ask the participants to perform ten different exer-
cise activities including walk, sit-up, push-up, high knee, leg lift,
lunge, plank hold, squat, crunchy, and sit down. Each partici-
pant is asked to perform 10 groups of each activity with five
repetitions (10 × 10 × 10 × 5 = 5000 samples in total). In the
evaluation, 80% of the dataset is randomly selected to train the
activity recognition classifier while the rest of 20% data is used
for testing.
• D𝐻𝐺𝑅 : We ask the participants to perform ten different hand
gestures including slide, front-back, up-down, zig-zag, wave,
circle, triangle, square, flap, and flip-palm. Each participant is
asked to perform 10 groups of each gesture with five repetitions
of both left-hand and right-hand (10 × 10 × 10 × 5 × 2 = 10000
samples in total). Similarly, we use 80% data samples to train the
CNN neural network of the hand gesture classifier and evaluate
the performance with the rest of 20% data samples.

4.3 Overall Effectiveness
Metrics. For respiration monitoring, we obtain the respiratory rate
with the standard deviation (STD) of each participant and com-
pare the respiratory rate produced by REHSense with the recorded
ground truth. We use the classification accuracy and confusion
matrix as metrics for human activity and hand gesture recognition.
Effectiveness of RM. Figure 9a, Figure 9b, and Figure 9c show the
average respiratory rates of the ten participants fromREHSense and
their corresponding ground truths when the participants are lying,
sitting, and standing, respectively. Among all the ten participants,
the calculated respiratory rate presents a maximum error of 4.6%,
6.4%, and 13.2% in three situations. The detection accuracy when
the participant is lying (accuracy 95.4%) and sitting (93.6%) is higher
than that of standing (accuracy 86.8%). This is because when the

participant is standing, the rise-and-fall of both the front chest and
the back causes diffraction effects, making respiration monitoring
more challenging. In addition, we find the average respiratory rate
provided by REHSense is close to the ground truth, but REHSense’s
calculation presents a larger standard deviation (averagely STD
1.2%, ground truth STD: 0.59%), which means REHSense performs
better when monitoring the respiration for a long-time duration.
Effectiveness of HAR. Figure 10a shows the classification results
(confusion matrix) of the trained CNN-based HAR classifier. The
overall accuracy in recognizing the ten involved human activities
is 95.7%. From the result, we find that REHSense can accurately
recognize activities like walking, push-up, and high knee (100%
accuracy), but performs the worst in recognizing activities like sit-
up (90% accuracy) and lunge (accuracy 86%) because these activities
require the person to perform similar actions, i.e., bending knees
to squat, which results in close patterns of the harvested voltage
signals and increases the number of misclassified activities.
Effectiveness of HGR. Figure 10b shows the classification results
(confusion matrix) of the trained CNN-based HGR classifier. The
overall accuracy in recognizing the ten involved hand gestures is
90.8%. In addition, we observe REHSense performs the best in rec-
ognizing hand gestures such as front-back and up-down (accuracy
95%) but presents the lowest accuracy in recognizing gestures such
as zig-zag (accuracy 85%) and triangle (accuracy 87%) because ges-
tures like zig-zag and up-down, triangle and square have similar
keystrokes and tracks, which causes similar energy patterns and
increases the number of misclassified gestures.

4.4 Impact of Practical Factors
Different Wi-Fi routers. In § 4, we present the overall effective-
ness of REHSense with the Xiaomi MI Router. To evaluate the
impact of different commodity Wi-Fi routers and demonstrate the
generalization ability of our system, we follow the same procedures
in the aforementioned three sensing tasks with other three Wi-Fi
routers: Huawei 4G Router 2 Pro, TP-Link TL-WR742N, and Tenda
F3. Figure 11a shows the accuracy in calculating the respiratory
rate (lying), determining human activities, and recognizing hand
gestures of different Wi-Fi routers. For the three sensing tasks,
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(a) Impact of Wi-Fi routers. (b) Impact of sensing ranges. (c) Impact of environments.
Figure 11: Analysis of the impact of different Wi-Fi routers, sensing ranges, and environments.

(a) Different locations. (b) Results.
Figure 12: Evaluation results in different locations.

the maximum differences in accuracy rates using different Wi-Fi
routers are 2.6%, 4.6%, and 3.4%, respectively, demonstrating the
robustness of REHSense for different Wi-Fi routers.
Different sensing ranges. As mentioned in § 2.1, the harvested RF
energy depends on the distance (a.k.a. sensing range) of𝑇𝑥 and 𝑅𝑥 .
To investigate the impact of different sensing ranges, we adjust the
sensing range from 1.0m (default setting) to 1.25m, 1.5m, 1.75m,
and repeat the similar experiment processes. Figure 11b shows the
classification accuracy of REHSense in different sensing tasks at
different sensing ranges. We find the accuracy rates of the three
sensing tasks decrease approximately by 4.3%, 13.1%, and 10.5% as
the sensing range changes from 1.0m to 1.75m. This is because as
the sensing range increases, the FFZ becomes larger and sensitive to
the surrounding noise (i.e., other transmitter sources, movements)
that deteriorates the performance of REHSense. Moreover, the har-
vested energy decreases due to the transmission attenuation of the
RF signal, leading to a low signal-to-noise ratio. For example, when
the Wi-Fi router and the RF energy harvesting device are sepa-
rated by 1.2m, nearly 90% energy is lost in the air [27]. Despite the
sensing range in our current settings being limited (e.g., <1.75m),
we present REHSense as a proof of concept that we can harness
RF energy harvesting for wireless sensing. In practice, the sensing
distance can be extended by implementing a more powerful energy
harvester with high-gain antennas and more RF-DC converters. For
instance, works such as [28] can harvest RF energy at a maximum
distance of 9.75m, and we will focus on extending the sensing
distance of REHSense to make it more robust in our future work.
Different environments. We further conduct the same experi-
ments in the other three common indoor scenarios (office, corridor,
and cafe) to investigate the impact of environments. Figure 11c
presents the classification accuracy of the three sensing tasks in dif-
ferent environments. In different environments, REHSense shows
overall accuracy rates of 94.6%, 94.5%, and 90.2% for respiration
monitoring, activity recognition, and gesture recognition, respec-
tively. We notice that the maximum accuracy difference in the
four environments is 5.4%, 4.9%, and 2.8% only. This is because
the small signal variations induced by the environment noise (e.g.,
other people’s movements) can be removed by the S-G filter as has
been proved in previous studies [3, 22]. The results demonstrate
the robustness of REHSense in different environments.
Different human locations. As shown in Figure 12a, we con-
ducted experiments at three different locations (location1: 1st quar-
ter point, location 2: middle, and location3: 3rd quarter point) when

Table 1: Comparison with other four types of wearable/wireless sensing tech-
niques. ● for “Yes”, ❍ for “No”, ◗ for “Partially”.

Sensing system M1 M2 M3 M4 M5

CSI-based [3, 4, 29] ● ● ❍ ❍ 93.3% – 96.7%
Vision-based [30, 31] ● ● ❍ ❍ 83.4% – 96.3%
IMU-based [32, 33] ❍ ● ❍ ❍ 91.1% – 96.0%
KEH-based [34, 35] ❍ ❍ ● ● 70.2% – 87.4%
Radar-based [36, 37] ● ● ❍ ❍ 94.6% – 96.9%
RFID-based [38, 39] ● ● ● ◗ 72.0% – 90.4%

REHSense (Our system) ● ● ● ● 90.8% – 95.4%

the human performs aforementioned activities. Figure 12b depicts
the empirical results while REHSense’s overall performance de-
creases approximately 3.4% and 3.5% when shifting from location 2
to location 1 and location 3, respectively. Such a mild performance
decrease is because of the signal variations transmitted across the
human body at different locations. Nevertheless, the results show
that REHSense maintains consistency in human location changes.

4.5 Comparison with Other Sensing Methods
To further illustrate the advantages of the proposed RF energy
harvesting-basedwireless sensing technique, we compareREHSense
with the baseline CSI-based sensing systems [3, 4, 29] and four types
of well-known sensing techniques: vision-based sensing [30, 31]
(i.e., camera-based), IMU-based sensing [32, 33] (i.e., accelerometer,
gyroscope), kinetic energy harvesting (KEH) based sensing [34, 35],
and RFID-based backscatter sensing systems [38, 39]. Table 1 shows
the comparison results from five metrics: (M1) intrusive sensing or
non-intrusive sensing, (M2) coarse-grained or fine-grained recog-
nition, (M3) active sensing or passive sensing, (M4) power-hunger
or energy efficient, and (M5) sensing accuracy ranges.
Comparison with Wi-Fi CSI-based sensing. We compare the
performance of REHSense with the state-of-the-art Wi-Fi CSI-
based approaches in the same settings [3, 4, 29]. For the hardware,
we install the commonly used Linux 802.11n CSI tool [7] on a
Lenovo T400 laptop to extract CSI. Specifically, empirical results in
Table 1 shows that REHSense and the CSI-based sensing system
separately achieve accuracy of 95.4% vs. 96.7% in respiration mon-
itoring, 95.7% vs. 95.1% in human activity recognition, and 90.8%
vs. 93.3% in hand gesture recognition. The result shows REHSense
achieves comparable accuracy with the CSI-based systems.
Comparison with vision-based/sensor-based sensing. Com-
pared with vision-based sensing systems [30, 31] that use cameras
to capture images and videos for human sensing, REHSense shows
high efficiency in energy consumption since the RF energy har-
vester has no power consumption tomonitor the power traces of the
transmitting RF signals. Furthermore, sensor-based systems [32, 33]
are popular sincemost commoditymobile devices are equippedwith
IMU sensors (i.e., accelerometer and gyroscope). However, these
IMU-based systems require the user to hold their smartphones or
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Xiaomi Bedside 

Smart Lamp

Wi-Fi Antenna

P21XXCSR-EVB

(a) w/ Xiaomi bedside lamp.

Tuya Smart

Thermometer

Wi-Fi Antenna

P21XXCSR-EVB

(b) w/ Tuya thermometer.
Figure 13: Integrate REHSense into IoT devices.

Figure 14: Effectiveness of integrating with IoT devices.

wear a smartwatch to intrusively obtain the data traces. To move to-
wards battery-free sensing, recent works [34, 35] proposed kinetic
energy harvesting (KEH) that converts kinetic energy to current
traces for human sensing. Nevertheless, KEH-based sensing sys-
tems also require the user to wear specific sensors and can only
recognize coarse-grained human activities [34].
Comparison with RFID-based/radar sensing. RFID-based sens-
ing systems [38, 39] seem to share the same principles of REHSense
because passive RFID tags also integratedwith RF energy harvesting
circuits to scavenge the RF energy sent by the RFID reader. However,
RFID-based sensing systems need a professional RFID reader or
USRP to send RF signals at approximately 915MHz so that they can-
not be integrated into a smart home, whereas REHSense harvests
RF energy from theWi-Fi signals (e.g., 2.4GHz) radiated fromWi-Fi
routers that are widely deployed in most indoor scenarios and also
demonstrate the feasibility of being totally battery-free. Similarly,
radar-based sensing systems [36, 37] require customized profes-
sional hardware, which consumes more energy in signal collections.
Therefore, REHSense is much more practical and energy-efficient
than RFID-based and radar-based sensing systems.
Energy efficiency of REHSense. To demonstrate the energy-
efficient of our system, we use the Monsoon Power Monitor to
measure the energy consumption of each hardware component.
REHSense utilizes a passive RF energy harvesting board to capture
Wi-Fi signal, which does not consume any energy. The Arduino
Nano (with a MicroSD card) consumes 11.3−12.6mW for data col-
lection. By contrast, an Intel 5300 NIC card in the CSI-based sensing
system consumes 820−940mW [9, 10] to receive Wi-Fi packets.
Hence, REHSense reduces around 98.7% energy consumption in
the hardware. Moreover, the harvested RF energy is converted to
DC voltages that can be used for charging sensors and batteries. For
instance, assume an IoT device (i.e., LED lamp) is powered by a 9 V,
550mAh rechargeable battery that can support a power-intensive
component like Intel 5300 NIC for only 5.3− 6.0 hours, whereas the
battery can support the low-power REHSense for around 400 hours.
In addition, REHSense can harvest approximate 4.5mW RF energy
at the distance of 1m for charging the battery so that it can prolong
the usage and lifestyle of this IoT device. In particular, the efficiency
of this RF-to-DC conversion is limited by the hardware design of

the current RF energy harvesting device (i.e., P21XXCSR-EVB [17]).
It contains only two PCC110 RF-DC converters [40], making the
conversion efficiency constrained to approximately 6% [27] and
reducing the energy efficiency of building a perfectly battery-free
system. We leveraged this commercial RF energy harvesting de-
vice as a proof-of-concept study to harness RF energy harvesting
for sensing, and the harvesting efficiency could be improved by
deploying more RF-DC converters in future studies.

4.6 Integrating REHSense into IoT Devices
In this experiment, we present examples of integrating REHSense
into commodity IoT devices to demonstrate the feasibility and
usability of REHSense. Figure 13 shows that we integrate the
REHSense into a Xiaomi bedside smart lamp and Tuya smart ther-
mometer by connecting its on-chip Wi-Fi antenna to the RF energy
harvesting board. Then, we use these two modified IoT devices as
the receiver to evaluate the performance of REHSense in the three
wireless sensing tasks. Figure 14 presents the results of using the
Xiaomi bedside smart lamp and Tuya smart thermometer as the
wireless receiver (with the RF energy harvesting board), as well
as the overall effectiveness we have shown in § 4.3. We can see
that the REHSense-equipped Xiaomi bedside smart lamp shows
accuracy rates of 91.8%, 92.7%, and 87.0% in respiration monitoring,
human activity recognition, and hand gesture recognition, respec-
tively. The modified Tuya smart thermometer shows 88.7%, 89.4%,
and 83.9% accuracy in the three sensing tasks. Compared to the
original REHSense prototype, the accuracy rates of the three sens-
ing tasks drop approximately by 6%-7% as the inner antennas of
commodity IoT devices are not powerful as an external antenna
used in REHSense. Nevertheless, experiment results still show high
feasibility and usability of REHSense in daily IoT devices.

4.7 Potential of Battery-free Sensing
Since REHSense has shown promising sensing performance and
low power consumption, we then implement a prototype system to
demonstrate how REHSense pushes human sensing from power-
hungry sensing to battery-free sensing. Figure 15 presents the pro-
totype system as well as its circuit diagram, which consists of three
components: an RF energy harvesting board (P21XXCSR-EVB), a
storage capacitor array made by eight parallel 330 µF capacitors,
and an Arduino Nano MCU with a MicroSD card. Specifically, the
capacitor array is designed for storing harvested energy and then
using the storage to support electrical components [28, 41], while
the Arduino Nano and MicroSD card record the DC voltages for
different sensing tasks. Below, we provide two application examples
of the prototype system to illustrate how to achieve battery-free
sensing based on our prototype of REHSense.
Application 1: Sensing and Powering. In § 4.6, we present
REHSense can be integrated into commodity IoT devices and achieve
promising sensing accuracy. It also inspires us to think: can we
achieve battery-free sensing by using the harvested energy for sensing
and powering simultaneously? With this question, we further opti-
mize the above prototype by adjusting the sensing range to obtain
a high harvested voltage and then explore the possibility that the
captured RF energy can be used for lighting a LED and sensing
without any external power sources (i.e., battery, USB powerline).
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Figure 15: A prototype of the battery-free sensing system.

Figure 16: The harvested energy in the capacitor array vs. charging time.

Specifically, we utilize a B&K Precision 2190E 2-channel digital os-
cilloscope to monitor the changes in the harvested RF energy when
the LED keeps lighting (harvested voltage ≥ 1.6V). We find the
oscilloscope shows distinctive patterns of different hand gestures
at a sensing range of 10 cm while the harvested RF energy can also
power the surface-mount LED module simultaneously. Even with a
limited sensing range, this example shows that REHSense has the
potential to achieve wireless sensing and power small IoT devices
such as LED lights simultaneously, enabling various self-powered
devices with wireless sensing capability.
Application 2: Sensing and Communication. Since we have
demonstrated that the harvested energy can be used to support elec-
trical components like LEDmodules, another question arises: can we
use the harvested RF energy to support communication so that we can
transmit the harvested voltage data to the remote devices for different
sensing tasks? As the RF energy harvester can only store limited en-
ergy, we attach a capacitor array to store more harvested RF energy
to achieve the application of supporting power-intensive compo-
nents such as a Bluetooth module. Specifically, we use the Bluetooth
module HC-05 that is running over a 3.3V voltage with 200mW
power to support the communication, and it takes extra time to
charge the capacitor array for storing enough power to achieve one
data transmission process. We further explore the charging time
with stored harvested RF energy at different sensing ranges from
1.0m to 0.75m, 0.5m, 0.25m and record the harvested RF energy in
charging the external capacitor array so that it has enough energy
to power the Bluetooth module. Figure 16 presents the time-voltage
curves with different sensing ranges when the harvested RF energy
is monitored for sensing and being used for charging the capacitor
array.We find as the sensing range decreases, the charging time also
decreases since much more Line-of-Sight RF energy is harvested
by our devices. For instance, it takes 44.1 s, 25.6 s, 6.0 s, and 0.4 s to
store enough energy to support one Bluetooth communication with
sensing ranges of 1.0m, 0.75m, 0.5m, and 0.25m, respectively. The
results reflect that a trade-off between the charging time and the
sensing range should be considered to make REHSense in realizing
battery-free sensing and communications.

Generality of REHSense in other tasks. The experiments above
demonstrate the potential of using RF energy harvesting for ubiqui-
tous battery-free sensing and related applications, with REHSense
marking the first step toward this goal. As RF energy harvesters
become more widely deployed in various IoT devices, REHSense
can be further extended to other sensing tasks, providing an or-
thogonal, energy-efficient solution. Similarly, beyond performing
sensing tasks like CSI-based sensing (e.g., heartbeat monitoring [42],
passenger counting [43]), REHSense can also sense any wireless
transmission with RF signals to discern patterns carrying user in-
formation. For instance, a recent work, AppListener [44], showed
that RF energy harvesting can be used to monitor network traffic
and reconstruct fine-grained on-device mobile app activities.

5 RELATEDWORKS
Wearable sensing.Wearable sensing techniques have been widely
studied over the past few decades, which exploit sensor data col-
lected from wearable devices to enable various sensing applications.
For instance, IMU-based systems utilize IMU sensors (i.e., accelerom-
eter, gyroscope, and magnetometer) equipped in mobile devices (i.e.,
smartphone, smartwatch) to infer human activities [32], translate
gesture-based sign language [45], and realizes automatic key gener-
ation for on-body communication [46]. Cao et al. utilize the built-in
accelerometer and magnetometer of smart terminals to extract in-
formation representing user identity, achieving convenient and
efficient authentication for heterogeneous IoT devices [47, 48]. In-
stead of requiring the user to wear sensor-based devices, REHSense
introduces a novel non-intrusive sensing method, RF energy har-
vesting, and achieves fine-grained wireless sensing tasks with high
effectiveness as well as low power consumption.
Wireless sensing.Wireless sensing has been widely studied be-
cause of its promising performance and contact-free manner. Most
existing wireless sensing works [1, 2, 5, 49, 50] focus on extracting
Wi-Fi CSI as the channel measurement because of its granularity
and compatibility with COTS devices. Recent CSI-based sensing
studies have formulated the theoretical description of the Fresnel
diffraction sensing model and the results indicate good identifica-
tion performance and generalization ability in respiration moni-
toring [6, 29], activity recognition [3], and gesture recognition [4].
Compared with these works, REHSense has demonstrated com-
petitive human sensing performance without modifying the COTS
devices. In addition, our system requires much less energy con-
sumption than a conventional CSI-based system, and the harvested
RF energy can be reused to power other electronic components.

6 CONCLUSION
In this paper, we present REHSense, a novel wireless sensing system
based on RF energy harvesting. We address two major limitations of
existing Wi-Fi based wireless sensing systems by using RF energy
for the dual purpose of energy harvesting and sensing. We design
and implement a prototype of REHSense and comprehensively
evaluate its performance in three common human sensing tasks:
respiration monitoring, human activity recognition, and hand ges-
ture recognition. Experiments show that REHSense achieves high
accuracy in these sensing tasks for different routers and environ-
ments. Comparison with a traditional Wi-Fi based sensing system
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shows that REHSense achieves comparable accuracy and good
adaptation ability while reducing energy consumption significantly.
Moreover, we demonstrate the feasibility of REHSense by integrat-
ing it into commodity IoT devices and implement a prototype to
demonstrate the potential of battery-free sensing. We envision the
wide deployment of REHSense when future smart IoT devices are
equipped with RF energy harvesting techniques.
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