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Abstract—Millimeter-wave (mmWave) radar-based gesture
recognition is gaining attention as a key technology to enable
intuitive human-machine interaction. Nevertheless, the significant
challenge lies in obtaining large-scale, high-quality mmWave
gesture datasets. To tackle this problem, we present iRadar,
a novel cross-modal gesture recognition framework that employs
Inertial Measurement Unit (IMU) data to synthesize the radar
signals generated by the corresponding gestures. The key idea
is to exploit the IMU signals, which are commonly available in
contemporary wearable devices, to synthesize the radar signals
that would be produced if the same gesture was performed in
front of a mmWave radar. However, several technical obstacles
must be overcome due to the differences between mmWave and
IMU signals, the noisy gesture sensing of mmWave radar, and the
dynamics of human gestures. Firstly, we develop a method for
processing IMU and mmWave data that can consistently extract
critical gesture features. Secondly, we propose a diffusion-based
IMU-to-radar translation model that accurately transforms IMU
data into mmWave data. Lastly, we devise a novel transformer
model to enhance gesture recognition performance. We thor-
oughly evaluate iRadar, involving 18 gestures and 30 subjects in
three scenarios, using five wearable devices. Experimental results
demonstrate that iRadar consistently achieves 99.82% Top-3
accuracy across diverse scenarios.

Index Terms—mmWave sensing, gesture sensing, diffusion
model

I. INTRODUCTION

A. Background and Motivation

Radio Frequency (RF)–based gesture recognition has at-
tracted significant attention due to its ability to enable contact-
less and device-free human-machine interaction. A prime ex-
ample is the utilization of millimeter-wave (mmWave) signals
from frequency-modulated continuous-wave (FMCW) radar
for gesture recognition. This exploits that each gesture has a
unique pattern, and mmWave signals can capture these differ-
ences. The applications of mmWave-based gesture recognition
extend to diverse fields such as smart homes, autonomous
driving, and interactive gaming [1]–[3].

Despite its potential, mmWave radar-based gesture recog-
nition, like many other RF-based sensing tasks, confronts a
fundamental challenge that requires extensive training with
prior instances of individuals performing gestures in the same
settings [4]–[6]. This requirement poses difficulties for the
practical deployment of this technology in real-world scenar-
ios. For instance, in interactive gaming scenarios, a radar-based
gesture recognition system may struggle to accurately identify
gestures that have not been previously recorded by mmWave
radar. To address this issue, recent studies have explored the
use of transfer learning [7] and domain adaptation [8], [9] to
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Fig. 1: Motivation of iRadar.
reduce the training burden, primarily focusing on minimizing
the required training instances. While these approaches have
shown promising results, it is crucial to acknowledge that they
still necessitate prior radar data collection, which carries two
key limitations: 1) the deployment of radar devices in the data
collection area and 2) the pre-collection of gesture instances.

This paper introduces a novel approach that eliminates
the need for prior mmWave data collection and substantially
deviates from existing mmWave-based gesture recognition
systems. Drawing from the recent success of diffusion models
(e.g., Sora and GPT-4), we aim to investigate the viability
of using alternative sensing modalities to eliminate the need
for data collection. Traditional gesture recognition methods
primarily rely on three sensing modalities: wireless signals [4],
[6], [10], cameras [11]–[13], and wearable sensors [14]–[16].
This inspires us to leverage the advantage of one sensing
modality (i.e., the ubiquity of cameras and wearable sensors)
to overcome the data scarcity problem of mmWave-based
gesture sensing. While previous studies have suggested the
synthesis of mmWave signals from videos [17]–[19], we found
that wearable sensors provide multiple advantages over video
in this context due to the following reasons. Firstly, video-
based methods still require the deployment of a camera in
the data collection environment. Secondly, videos are prone
to various practical factors, such as occlusion, lighting con-
ditions, and viewpoint, which can introduce instability in the
generated mmWave signals. Moreover, privacy concerns arise
when video recording for gesture analysis is implemented.
In contrast, the Inertial Measurement Unit (IMU) is widely
equipped with wearable devices, such as smartwatches and
rings. Therefore, utilizing the ubiquitously available IMU
sensors essentially reduces device deployment costs. Addi-
tionally, there is a plethora of existing IMU-based gesture
datasets, like mmGest [20] and UHH-IMU [21], which can be
directly translated to mmWave-based gesture datasets without
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extensive data collection. Instead of following the traditional
development pipeline for mmWave gesture recognition sys-
tems, our system allows service providers to convert IMU
datasets into costly-to-collect mmWave datasets with ease.
These transformed mmWave datasets are essential for develop-
ing accurate mmWave-based gesture recognition models that
meet end-user needs. To summarize, our research leverages
the strengths of IMU-based systems to overcome data scarcity
in mmWave-based human gesture sensing.

B. Challenges and Contributions

Challenge 1: Fundamental discrepancies between IMU
and mmWave signals. The signal properties of IMUs and
mmWave radars are inherently distinct. To begin with, IMUs
detect the inertial forces and joint rotations associated with a
person’s gestures, whereas mmWave radar devices exploit the
shadowing, diffraction, reflection, and scattering effects caused
by the gestures on wireless signals [22]–[25]. Additionally,
IMU signals are expressed as real numbers, contrasting with
the complex number representation of mmWave radar signals
as shown in Fig. 2. To address this challenge, we thoroughly
analyze the IMU and mmWave signals related to human
gestures. We employ a theoretical model to explore their
fundamental relationship. Yet, due to the dynamic nature of
human gesture patterns, translating IMU data into mmWave
data through direct mathematical formulations is a difficult
task. While current diffusion models [26], [27] demonstrate
strong performance in tasks such as text and vision generation,
they exhibit limitations in the realm of sensor data generation.
To bridge this gap, we propose a novel deep diffusion frame-
work equipped with an inertial fusion module and a translation
module to efficiently transform IMU data into mmWave data.
Challenge 2: Noisy gesture sensing in mmWave radar.
A major challenge in leveraging commercial single-chip
mmWave radar units for gesture recognition lies in the accurate
extraction of fine-grained features critical for interpreting
subtle movements. While these devices excel at detecting
target movements, they often capture a significant amount of
environmental noise. As depicted in Fig. 3 (a), the Range-
Doppler map exhibits substantial interference. Therefore, the
Time-Frequency map derived from the Range-Doppler map
still contains unavoidable noise, as demonstrated in Fig. 3 (b),
which can obscure the nuanced gestures we aim to identify. To
address this challenge, we propose the MC-MWIE algorithm, a
sophisticated dual-stage technique designed to enhance signal
clarity and resolution for gesture recognition applications. It
engages a synergistic approach combining cluster analysis with
morphological processing to mitigate environmental noise and
refine the resolution. The result is a set of mmWave heatmaps
with improved clarity, enabling accurate feature extraction.
Challenge 3: Dynamics of human gestures. Gestures involve
the coordinated movements of multiple body parts, which
encompass various actions and involve numerous joints and
muscles [28]. Capturing the full dynamics of these complex
3D motions with a single sensing modality proves difficult.
Additionally, the variability and subtlety among different ges-

N
or

m
. A

m
p.

Real Image

Samples
0 1000 2000 3000 4000 5000 6000

IMU-X

IMU-Y

IMU-Z

mmWave

Fig. 2: Signals difference.

0

1

Velocity (m/s)
−1.5 −1 −0.5 0 0.5 1 1.5

Target
Interference
Components

R
an

ge
 (m

)

Target

N
or

m
. F

re
qu

en
cy

Static Noise

Dynamic Noise

0

1

Time (s)
0 2.5 7.5

(b)

(a)

Fig. 3: Noisy gesture sensing.

tures often impede gesture recognition accuracy. To enhance
the precision of gesture recognition, it is imperative to move
beyond the traditional convolution-based method [7], [29],
[30], which are insufficient for the complexity of gesture
dynamics. Transformers have demonstrated effectiveness in
handling vision tasks [31]; however, their direct application
to mmWave heatmaps of gestures presents challenges, as the
unique time-frequency properties of gesture signals differ sig-
nificantly from typical image data. In response, we introduce a
novel transformer for the unique mmWave gesture heatmaps.
This model boosts recognition by integrating specialized com-
ponents to better capture the intricacies of gestures.

In this paper, we propose iRadar, a cross-modal iMU-to-
Radar gesture recognition framework. This system eliminates
the necessity for the initial deployment of mmWave radar
devices and the collection of explicit data. This progress
pushes mmWave-enabled gesture recognition technologies into
a realm of real-world usability. Through a comprehensive
evaluation that included eighteen gestures, thirty participants,
tested across three distinct settings, and utilizing five different
mobile devices, iRadar has proven its efficacy by attaining
an average accuracy of 92.3% in settings ranging from indoors
and outdoors to through-obstacle scenarios. Our key contribu-
tions are outlined as follows:
• We present iRadar, which, to our best knowledge, is

the first cross-modal IMU-to-mmWave gesture recognition
framework that avoids the installation of mmWave device
and explicit data collection, significantly reducing the bur-
den of service providers.

• iRadar offers threefold specialized approaches, which
include a diffusion-driven translation method, a mmWave
heatmap enhancement method, and a Doppler transformer
recognition method. Collectively, these methods tackle the
above challenges and ensure accurate gesture recognition.

• We develop a system prototype and conduct extensive
experiments to evaluate the performance of iRadar across
various scenarios and mobile devices. Experimental results
indicate iRadar consistently achieves an average Top-3
accuracy of 99.82%.

II. PRELIMINARIES

A. mmWave Sensing

The mmWave radar utilizes the FMCW signal, often re-
ferred to as the chirp signal. The chirp signal’s frequency
increases linearly with time t according to the equation
f(t) = fc + St, where fc denotes the starting frequency
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and S represents the frequency modulation slope [32], [33].
Assuming the amplitude of the transmitted signal at time t is
A1, the transmitted FMCW signal STx(t) is expressed as

STx (t) = A1 cos

[
2π

(
fct+

St2

2

)]
. (1)

When the transmitted signal encounters an obstacle, such as
the user’s hand, at a distance d, the radar receives a delayed
version of the transmitted signal STx(t), denoted as SRx(t).
This received signal can be expressed as

SRx (t) = αA1 cos

[
2π

(
fc (t− τ) +

S(t− τ)2

2

)]
, (2)

where α represents the path loss, τ = 2d/c denotes the time
delay, and c is the speed of light. Finally, the transmitted signal
STx(t) is mixed with the received signal SRx(t), and a low-
pass filter is employed to extract the sum frequency compo-
nents, resulting in the intermediate frequency (IF) signal:

SIF (t) = LPF{STx (t) · SRx (t)} = A2 cos (2πfIF t+ ϕIF ) , (3)

where A2 is the amplitude of the IF signal, fIF = 2dS/c is the
beat frequency, and ϕIF represents the phase of the IF signal.
The FMCW mmWave radar enables the extraction of crucial
target information such as range and velocity. Specifically,
as depicted in Fig. 4, the range information is determined
by applying the Fast Fourier Transform (Range FFT). The
velocity information is obtained by performing the Fast Fourier
Transform (Doppler FFT) on multiple IF signals spanning the
slow time dimension.

B. Human Gesture

Human gestures are characterized by the intricate move-
ments and postures adopted by various body segments [28].
These gestures originate from the unique interactions among
specific body components. As shown in Fig. 5, the human
gesture is driven by three steps. 1) Muscle activation: the
biceps brachii muscle flexes the elbow, while the deltoid
muscle aids in moving the arm at the shoulder joint. 2) Bone
movement: the rotation of the radius over the ulna allows
pronation and supination of the forearm. 3) Joint cooperation:
the combined action of the shoulder’s ball-and-socket joint, the
elbow’s hinge joint, and the wrist’s complex array of plane and
hinge joints. These synchronized elements facilitate a diverse
range of nonverbal expressions.

C. Cross-Modal Relationship Analysis

We now explore the relationship between mmWave and
IMU gesture sensing, as shown in Fig. 6.
IMU signal. As detailed in Sec. II-B, human gestures involve
distinct movements of specific body parts. The IMU data
from an on-arm wearable device (denoted as Is(t), collected
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Fig. 5: Understanding human gesture.
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during these gestures) is a composite representation of the
accelerations experienced by the engaged body segments:
Is(t) =

∑
n Gi(ai(t)), where ai(t) is the acceleration of the ith

body part involved in the execution of the gesture at time t, and
Gi(·) represents the transfer function mapping the acceleration
due to the movement of each body part to the on-arm device.
mmWave signal. As discussed in Sec. II-A, the movement of
human body parts during the execution of the gesture can lead
to phase changes in the mmWave signal. Therefore, we can
express the mmWave signal variations induced by different
gestures mathematically as follows:

M(f , t) = H0(f , t) +
∑
i

Ai(f , t)e
−j( 2π

λ
(li0+ai(t)·t2)), (4)

where H0(f , t) represents the complex static path signal
generated by the human body and surrounding environmental
objects [33]–[40], while Ai(f , t) denotes the amplitude of
the dynamic path signal reflected from the ith arm/hand
segment during gesture execution. The term li0 signifies the
initial signal propagation distance, and ai(t) denotes the
acceleration of the arm/hand segment. Let Ms(t) represent the
magnitude square of the baseband signal M(f , t). Assuming
|H0(f , t)| ≫ |Ai(f , t)|, we can represent Ms(t) as

Ms(t) = D +
∑
i

Bi cos

(
2π

λ
(li0 + ai(t) · t2)− φs

)
, (5)

where D = |H0(f , t)|2 +
∑

i |Ai(f , t)|2 represents the DC
component of Ms(t), Bi = 2 |H0(f , t) ·Ai(f , t)|, and φs

denotes the phase of the complex static path signal.
Relationship analysis. As mentioned above, since both Is(t)
and Ms(t) are functions of acceleration ai(t), Is(t) incor-
porates frequency components that either coincide with or
closely resemble the frequencies present in R(t). Both data
types are defined by functions that use acceleration as the
independent variable, suggesting the potential to transform
IMU data into mmWave data through a non-linear function
L(·): Ms(t) = L(Is(t)). We first examined the linear relationship
between the features extracted from IMU spectrograms and
mmWave heatmaps by calculating the coefficient of linear
correlation. This analysis revealed a mean correlation value
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of 0.13, as illustrated by the orange line in Fig. 7. This
low correlation coefficient suggests a weak linear relationship
between these modalities. To further investigate the structural
similarities between them, we utilized the Structural Similarity
Index Measure (SSIM) [41], which measures the similarity
between two features based on an understanding of visual
perception. In our analysis, the mean SSIM between IMU
and mmWave features is 0.64, as shown in the blue line in
Fig. 7, indicating a moderate structural similarity. The above
results indicate the complexity of defining L(·) that accurately
characterizes the relationship between the IMU spectrogram
and mmWave heatmap features. Due to this complexity and the
inherent non-linearity between the two modalities, along with
other complicating factors such as noise, signal attenuation,
and multi-path effects [42], [43], conventional mathematical
approaches to defining L(·) are insufficient. Therefore, we
propose employing diffusion techniques, which are well-suited
for capturing complex, non-linear relationships to establish an
accurate mapping between them.

III. SYSTEM DESIGN

Fig. 8 shows iRadar’s overview, comprising three layers.
Cross-Modal Learning Layer. In the cross-modal learning
layer, we devise a deep diffusion model aimed at converting
the IMU feature into the mmWave feature. Initially, the raw
IMU data and mmWave data undergo preprocessing to mitigate
noise. Subsequently, IMU and mmWave features are generated
from each dataset using our proposed signal processing algo-
rithms. Finally, the proposed diffusion model is trained for
IMU-to-mmWave translation.
Translation Layer. In the translation layer, service providers
have the option to utilize either publicly available or propri-
etary IMU data. This data is then translated into mmWave
heatmaps using the trained IMU-to-Radar diffusion model.
Once the translation is complete, the resulting mmWave
heatmaps are used to train the gesture recognition network.
Application Layer. In the application layer, users can con-
veniently utilize mmWave radar-embedded smart devices to
directly capture mmWave gesture data and conduct real-time
gesture recognition for diverse applications.

A. Feature Extraction

1) mmWave Heatmap Generation: As illustrated in
Sec. II-A, the IF signal obtained by mixing is used for sensing
gesture. In addition to the user’s gesture information, the
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Fig. 12: Extracted IMU feature.

IF signal contains a lot of static noise generated by static
objects such as walls, tables, and chairs as shown in Fig. 9.
For each frame, we use the average of all IF signals as
the static noise vector and subtract this static noise vector
from each IF signal to obtain the denoised data as shown in
Fig. 10. Then, we use the Range FFT and Doppler FFT to
obtain a Range-Doppler Map (RDM) for each frame, which
reflects the range and velocity information of the user while
performing gesture in the current frame. Finally, to obtain
the velocity change information during the execution of the
gesture, we transform the RDMs of all frames into a 2D
time-velocity feature map. As discussed in Sec. II-A, the
Doppler FFT responds to changes in phase difference, which
are proportional to frequency. Therefore, we can derive the
normalized frequencies by normalizing the extracted velocities
as shown in Fig. 11(a).

The resulting time-velocity feature map may exhibit some
noisy components stemming from the superposition effects
of RDMs, which can obscure significant velocity changes
in the gestures. To address this issue, we propose Mor-
phological Clustering for mmWave Heatmap Enhancement
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(MC-MWHE), a mmWave feature enhancement algorithm
based on image morphological operations. Specifically, we
first apply Gaussian blurring to the original feature map to
mitigate noise. Subsequently, we utilize K-means clustering to
segregate the pixels into two discrete categories, as depicted
in Fig. 11(b), where blue represents the gesture component
and red indicates the dynamic noise component. Subsequently,
pixels are reassigned based on the predominant clusters to
accentuate the primary features. Following this, the feature
map undergoes conversion to grayscale and binarization using
a mean threshold. Finally, morphological closure operations
are employed to bridge the discontinuities in the gesture
component, which are marked in green. The final enhanced
mmWave time-velocity heatmap is illustrated in Fig. 11(c).

2) IMU Spectrogram Generation: In iRadar, to isolate
gesture-related signals, the acceleration data along the X, Y,
and Z axes are decomposed into four levels utilizing max-
imal overlap discrete wavelet transform (MODWT). Finally,
the three processed IMU signals are employed to derive
three spectrograms using short-time Fourier transform (STFT),
which are shown in Fig. 12(a)-(c), respectively. The obtained
spectrograms from the three directions are utilized as the
inputs of the inertial fusion module in Sec. III-B1.

B. IMU-to-Radar Diffusion Model

This section introduces IMU-to-Radar (I2R), a diffusion
model designed to convert IMU spectrograms to mmWave
heatmaps. Fig. 13 shows the I2R structure, which consists of
an inertial fusion module and a translation module.

1) IMU Inertial Fusion: IMU data contains a wealth of
information related to signal frequency and motion intensity.
Furthermore, the frequency spectrum shapes of IMU data can
differ significantly between gestures. As a result, effectively
modeling and extracting features from the IMU spectrogram
poses a significant challenge. Consequently, we propose an
inertial fusion module comprising a Learnable Dilated Con-
volutional Neural Network (LDCNN)—a novel convolutional
approach to extract the features from IMU spectrograms.
Additionally, a gating mechanism assigns varying weights to
the features extracted by the LDCNN.
LDCNN-based feature extraction. Recall that the stan-
dard convolution operation which is characterized as O(σ) =∑

σ′∈S I(σ + σ′) ∗ K(σ′), where O(σ) is the output feature
map, I(σ) is the input feature map, K(σ′) is the convolution
kernel, and S is the neighborhood around the pixel σ. DCNN
(Dilated Convolutional Neural Network) is designed to expand

the convolutional kernel by periodically inserting spaces (i.e.,
zeros) between the kernel elements [44]. As a result, the
spacing between the elements’ dilation rate can be described
as O(σ) =

∑
σ′∈S I(σ+d·σ′)∗K(σ′), where I represents the input

feature map, K is the dilated convolution kernel, and d is the
dilation rate. In LDCNN, the positions of non-zero elements
within the convolutional kernel are learned using a gradient-
based method. However, since the positions in the kernel are
integer values, it poses a challenge in terms of differentiability.
To overcome this issue, we utilize interpolation. The main mo-
tivation behind LDCNN is to explore the potential of enhanc-
ing the fixed grid imposed by the standard DConv by learning
the spacing in an input-independent manner. Unlike the grid-
like arrangement of convolutional kernel elements in standard
and dilated convolutions, LDCNN allows for a flexible number
of kernel elements [45]: O(σ) =

∑
σ′∈S I(σ + L(σ) · σ′) ∗K(σ′),

where L(σ) is the learnable dilation rate function, which is
updated through backpropagation.
Gate module. Following the LDCNN stage, the extracted
features are fed into a gate module. The purpose of this
module is to selectively fuse information, leveraging a gating
mechanism to filter and combine pertinent features from the
three orthogonal axes of IMU data. For IMU spectrogram
features refined by the LDCNN, the gate module operates
as G(s1, s2, s3) = F (LDCNN(s1, s2, s3); η), where s1, s2, s3 is
the input IMU spectrograms, G(·) denotes the gated feature
output, F (·) is a fully connected fusion layer that integrates
the derived features, and η is the learned parameters.

2) Bridge Diffusion-based Translation: Based on Brownian
Bridge Diffusion (BBDM) [46], our approach incorporates a
bilateral framework specifically designed to bridge the gap be-
tween IMU and mmWave data. By considering both the corre-
lation and the unique characteristics of IMU spectrograms and
mmWave heatmaps, BBDM effectively captures the nuanced
mapping relationship between the two. Fig. 13 (b) illustrates
the mathematical process proposed by the translation method,
which includes the forward process and the reverse process.
Forward process. The forward process describes the diffusion
of IMU spectrograms to mmWave heatmaps, which initiates
from the IMU spectrograms and progressively incorporates
noise and drift, gradually transitioning towards the mmWave
heatmaps. The IMU spectrograms are represented by a set of
inputs s = {s1, s2, s3}. We let (s,h) denote the paired training
data from IMU spectrograms and mmWave heatmaps. We take
the ground truth mmWave heatmap conditional input h as
its destination. It is assumed that s and h are approximately



Fig. 14: Training progress for various gestures. Sequentially from top to
bottom: front raise, lateral-to-front raise, push, and forearm supination.

independent and normally distributed as s,h ∼ N (0, I). Given
initial state s0 (as the blue, orange, green circles illustrated
in Fig. 13 (b)), the intermediate state st (as the grey circle
illustrated in Fig. 13 (b)) and destination state h (as the red
circle illustrated in Fig. 13 (b)), the forward diffusion process
of Brownian Bridge can be defined as:

qBB (st | s0,h) = N (st; (1−mt) s0 +mth, δtI) , mt =
t

T
, (6)

where T is the total steps of the diffusion process, δt is the
variance. For training and inference purposes, we need to
deduce the forward transition probability qBB (xt | xt−1,h)
(as the grey line illustrated in Fig. 13 (b)):

qBB (st | st−1,h) = N
(
st;

1−mt
1−mt−1

st−1

+
(
mt − 1−mt

1−mt−1
mt−1

)
h, δt|t−1I

)
.

(7)

According to Eq. 6, when the diffusion process reaches the
destination, i.e., t = T , we can get that mT = 1. The
forward diffusion process defines a fixed mapping from IMU
spectrograms to mmWave heatmaps.
Reverse process. The reverse diffusion process can be utilized
to infer the possible initial IMU spectrograms that could have
resulted in the observed mmWave heatmaps by exploiting
UNet to learn the mapping functions between IMU spectro-
grams and their corresponding mmWave heatmaps by mini-
mizing the difference. It serves as the inverse of the forward
diffusion process. Starting from the mmWave heatmaps, the
backward diffusion process gradually eliminates the noise
and drift through reverse operations, restoring the distribution
towards the IMU spectrograms. Different from the existing
diffusion models, the Brownian Bridge process directly starts
from the conditional input by setting sT = h. The reverse
process aims to predict st−1 based on st :

pθ (st−1 | st,h) = N (st−1;µθ (st, t) , δtI) , (8)

where µθ (st, t) is the predicted mean value of the noise, and δ̃t
is the variance of noise at each step. The mean value µθ (st, t)
is required to be learned by a neural network with parameters
θ based on the maximum likelihood criterion.
Implementation. We utilize input IMU spectrograms in the
inertial fusion module as the source domain and mmWave
heatmaps as the target domain to train the diffusion model.
Additionally, we implement a U-Net neural network and
employ it in the backward process. The U-Net architecture
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Fig. 15: Doppler transformer.
consists of four encoders and four decoders, utilizing ReLU
as the activation function and max pooling for pooling op-
erations. The inertial fusion module, forward process, and
reverse process are closely connected as they are jointly trained
to optimize the overall performance. As shown in Fig. 14,
training progress from different gesture samples shows the
convergence and stability of the model.

C. Gesture Recognition

As outlined in Sec. I, accurate gesture recognition is a hard
task due to the inherent complexity of arm movements and
the diverse array of gesture patterns. Traditional approaches to
feature extraction in gesture recognition often rely on convolu-
tional neural networks [7], [29], [30], which may be inherently
constrained by their local receptive fields and weight-sharing
properties, potentially limiting their capacity to capture the
global dependencies within complex gesture data. Drawing
inspiration from the success of transformer architectures [31],
[47], we introduce a novel Doppler transformer tailored for
interpreting Doppler heatmaps of gestures in the following.
Spatial heatmap shift and patch embedding. As shown in
Fig. 15, our approach enhances traditional vision transformers’
limited receptive fields [31] by employing spatial heatmap
patches shifted along various diagonal axes [47], resulting
in an enriched representation of the time-doppler landscape
through overlapping and merging with original heatmaps.
Temporal attention layer. To effectively learn heatmap de-
tails, we use the temporal attention mechanism to concentrate
on the most significant temporal information. Specifically, we
first divide the patch embedding into chunks by temporal
sequence. Then we use a perceptual module to extract spatial
features and a temporal module [48] to integrate these features
over time, ensuring a comprehensive understanding of both
space and time within the data.
Implementation. The model comprises two temporal trans-
former layers, each projecting patches into a 64-dimensional
embedding space using a single attention head. It processes
input data in chunks of eight. Training proceeds for 1000
epochs with a learning rate and weight decay both set at 0.001.

IV. EVALUATION

A. Experimental Methodology

System implementation. The setup for evaluating iRadar
comprises the experimental devices depicted in Fig. 16. As
illustrated in Fig. 16(a), data collection for mmWave sensing
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Fig. 16: Experimental setup.
TABLE I: Wearable device and mmWave radar specifications

Name CPU Freq RAM OS IMU Model*
WT901WIFI 168MB N/A N/A IS MPU9250
Smart Ring 64MB 64kB N/A IS MPU9250
Myo Armband N/A N/A N/A IS MPU9150
Apple Watch S7 1.8GHz 1GB Watch OS 9 Unknown
Huawei Watch GT2 200MHz 32MB Lite OS 11 STM LSM6DSO
Name Start Freq ADC Samples Chirp Loops Idle Time
TI IWR1843 77GHz 256 255 100 µs

* IS: TDK InvenSense, STM: STMicroelectronics.

is conducted using a 77 GHz IWR1843 FMCW radar cou-
pled with a DCA1000EVM real-time data capture adapter.
Fig. 16(b) and (c) display the WT901WIFI motion sensor
and four wearable sensors employed for acquiring IMU data,
essential for the training and testing of the base model. In
addition, our evaluation considers a variety of wearable tech-
nologies including a smart armband, smartwatch, and smart
ring. Details on these devices can be found in Tab. I. The
IMUs operate at a default sampling rate of 100 Hz.
Data collection. To validate iRadar, we enlisted 30 volun-
teers consisting of 17 females and 13 males, ranging in age
from 15 to 64 years. All participants were in good health and
took part in a series of controlled experiments 1. The data col-
lection spanned over a three-month period. Our study involved
eighteen distinct gestures, as depicted in Fig. 17, encompassing
a variety of wrist, elbow, and shoulder movements. To test the
I2R diffusion model, we randomly selected half of the partic-
ipants (15 individuals). Each participant executed all eighteen
gestures 15 times while positioned in front of the mmWave
radar equipped with an IMU sensor. These sessions were
conducted under diverse conditions: indoors, outdoors, and
through-obstacle scenarios, as illustrated in Fig. 16(d)(e)(f).
For the evaluation of gesture recognition, the remaining 15
participants were instructed to complete two distinct sets of
gesture trials. The first set aimed at gathering data for the
translation recognition model, required participants to perform
each of the eighteen gestures 15 times while carrying mobile
devices across different settings, including indoor, outdoor,
and through-obstacle environments. The second set focused on
collecting gesture recognition data, with participants repeating
each gesture 15 times in the presence of the radar.
B. Overall Performance

Overall accuracy. Fig. 18(a) provides the accuracy per-
centages for gesture recognition across indoor, outdoor, and
through-obstacle scenarios, utilizing the recognition model

1Ethical approval has been obtained from the corresponding organization.
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Fig. 17: Gestures in the dataset. 18 distinct gestures, including lateral-to-
front raises, lateral raises, front raises, forearm supination/pronation, push,
pull, swipes, 45◦ lateral raises, horizontal rotations, and vertical rotations.
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Fig. 18: Overall Performance.

trained with iRadar. The top-N accuracy criterion indicates
the rate at which the correct gesture is identified within the
top-N selections. Specifically, the Top-1 accuracy achieved
in indoor settings was 93.1%, while outdoor settings saw a
slightly higher of 94.3%. For through-obstacle conditions, the
Top-1 accuracy is lower at 89.6%, attributable to the attenu-
ating effects of obstacles on mmWave signal propagation. For
Top-2 accuracy, the values remained notably high at 98.7%
for indoor, 99.3% for outdoor, and 98.3% for through-obstacle
scenarios. For Top-3 accuracies, with 99.8% for indoor, 99.9%
for outdoor, and 99.7% for through-obstacle conditions. The
results exhibit a high effectiveness of iRadar across a diverse
array of environmental conditions.

Comparison with baselines. We compare iRadar with
three types of state-of-the-art gesture recognition systems. (i)
mmWave-based: Wu et al.’s system [49], utilizing mmWave
Doppler heatmaps and mHomeGes [1], based on mmWave
point clouds; and (ii) IMU-based: Nguyen et al.’s IMU-
based system [50]; (iii) video to mmWave translation:
Vid2Doppler [17] with video translated mmWave heatmaps.
To ensure fairness, we adjusted each system to work best
with our dataset. As presented in Fig. 18(b), iRadar is only
1.2% less accurate than the system by Nguyen et al., yet it
is 0.7% more accurate than the system by Wu et al., 0.2%
more accurate than mHomeGes, and 4% more accurate than
Vid2Doppler. The IMU-based system shows higher accuracy
because wearables are attached to the body, resulting in lower
environmental noise. The results show that iRadar achieves
comparable accuracy to the state-of-the-art systems.
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Fig. 19: Experimental results.

C. Micro-Benchmark Evaluation

Performance of I2R diffusion model. The effectiveness of
the I2R diffusion model is shown in Fig. 19(a), where we
compare the accuracy utilizing the I2R model against those
employing DDPM [26] and pix2pix [51]. For integrating
the IMU inputs, both DDPM and pix2pix are accompanied
by an inertial fusion module. The results indicate that I2R
surpasses the comparative models in every environment. No-
tably, I2R achieves an increase in accuracy over DDPM by
1.64%, 2.94%, and 4.91% in indoor, outdoor, and through-
wall settings, respectively. When measured against pix2pix, we
observe accuracy improvements of 1.20%, 2.17%, and 3.41%.
Evaluation on Doppler transformer. We then assess the
proposed gesture recognition model, the Doppler transformer,
by benchmarking its accuracy against that of the Vision
Transformer (ViT) [31] and the Residual Network (ResNet)
[52] across various settings, including indoor, outdoor, and
through-wall scenarios. Fig. 19(b) presents a comparison of the
performance of different models in these environments. The
results show that iRadar exceeds the mean accuracy of ViT
and ResNet by margins of 4.13% and 5.73%, respectively. This
substantial improvement is indicative of iRadar’s advanced
capability to capture and interpret gesture-related features.
Evaluation on MC-MWHE method. The impact of our
proposed mmWave heatmap enhancement technique, MC-
MWHE, was assessed by comparing performance metrics
with and without the application of this method. As depicted
in Fig. 19(c), the deployment of MC-MWHE resulted in
accuracy improvements of 2.3%, 3.3%, and 4.7% for indoor,
outdoor, and through-obstacle scenarios, respectively. These
enhancements underscore the effectiveness of MC-MWHE in
noise reduction and the overall refinement of the recognition.
Generative information loss. The generative results of the
I2R diffusion model, which transforms IMU spectrograms into
mmWave radar heatmaps, are presented in Fig. 19(d). We
use the Structural Similarity Index Measure (SSIM) [41] to
assess the similarity between the generated heatmaps and their

TABLE II: Cross-scenario results.

IMU Sce.* mmWave Sce. Accuracy

I.D. O.D. T.O. I.D. O.D. T.O. Top-1 Top-2 Top-3

 # #  # # 93.12% 98.54% 99.71%
#  #  # # 93.21% 98.67% 99.81%
# #   # # 89.32% 98.22% 99.63%
 # # #  # 92.43% 98.99% 99.91%
#  # #  # 94.32% 98.93% 100%
# #  #  # 88.23% 98.31% 99.55%
 # # # #  89.47% 98.35% 99.67%
#  # # #  88.26% 98.23% 99.54%
# #  # #  89.71% 98.41% 99.81%
*  for chosen,# for unchosen, I.D.:indoor, O.D.: outdoor, T.O.: through-obstacle.

authentic counterparts. The I2R model demonstrates superior
performance, with SSIM scores indicating high levels of
similarity in different scenarios: in indoor settings, the model
achieves 85.21%, 83.27%, and 86.01% for three different
wearable devices; in outdoor environments, SSIM scores are
87.12%, 84.07%, and 87.39%; and through-obstacle conditions
resulted in 82.92%, 81.18%, and 83.98%. These results are
indicative of the model’s ability to produce outputs that are
closely aligned with the original mmWave signal.
Generalization ability. The ability of iRadar to adapt
to diverse environments and wearable device placements is
rigorously evaluated. Tab. II displays the system’s recogni-
tion capabilities across a range of IMU and mmWave data
collection scenarios. The table illustrates that iRadar has a
consistently high level of accuracy in various settings, with all
Top-3 accuracy surpassing 99.5%. It is observed, however, that
performance slightly dips in through-obstacle scenarios due to
the impact of obstructions on the mmWave signal. Conversely,
the system excels in outdoor scenarios, benefiting from the
absence of obstructions and reduced interference. To further
assess iRadar’s adaptability to different wearable device
positions, we establish a baseline using a model from one
wearable position and then enhance models for two additional
positions with ten epochs of further training. The results, as
depicted in Fig. 19(e), show that each position attains an
accuracy of over 89.5%. This underscores the model’s robust
generalization across wearable positions.
Evaluation on user position. Fig. 19(f) illustrates the in-



fluence of the user’s relative position to mmWave radar on
the accuracy of iRadar, with distances ranging from 1m
to 5m and angular displacement spanning −60◦ to 60◦. It
is observed that the system’s accuracy initially increases with
distance but subsequently diminishes. To be precise, average
accuracy increases by 12.43% when the distance extends from
1m to 3m and then declines by 7.56% as the distance further
grows to 5m. This suggests that at closer proximities, the
mmWave radar’s sensitivity to user orientation can negatively
impact recognition accuracy. Additionally, the system exhibits
better performance within −30◦ to 30◦, because users are more
prominently within the radar’s optimal sensing radius.
Evaluation on user number. In our investigation of the effect
of user group size on recognition accuracy within iRadar, we
observe notable trends as illustrated in Fig. 19(g). Accuracy
exhibits a positive correlation with group size, where an in-
crease from 5 to 10 members resulted in a 2.45% improvement
in accuracy, and a further increase to 15 members led to
an additional 1.13% improvement. This enhancement can be
attributed to the greater information of distinguishable gestures
present within larger groups, which contributes to the system’s
ability to correctly recognize them. iRadar achieves over
88% accuracy even in groups as small as five.
Evaluation on sampling rate. We then delve into the relation-
ship between the sampling rate and the accuracy of recognition
results in iRadar. We present our findings for sampling rates
of 10Hz, 50Hz, and 100Hz. Fig. 19(h) illustrates that when
the sampling rate is reduced from 100Hz to 50Hz, there is
a marginal decrease in accuracy by approximately 1.13%. A
further reduction of the sampling rate to 10Hz leads to a
more pronounced decline of about 2.60% in accuracy. This
significant drop is largely due to the omission of vital gesture
data that occurs at lower sampling rates, thereby negatively
affecting the system’s ability to recognize patterns accurately.
Evaluation on time-varying performance. Human gestures
are inherently variable, which requires a thorough evaluation
of the temporal reliability of iRadar. We engaged five
individuals using a smartwatch continuously over two months,
with evaluations every ten days. As shown in Fig. 20, a
gradual decrease in recognition accuracy was observed. More
precisely, there was an average reduction in accuracy of 2.17%
at the one-month mark and an additional 2.55% reduction
by the end of the second month. The observed decline can
be ascribed to natural variations in the users’ physiological
characteristics, such as muscle tone and joint flexibility, which
subtly alter gesture patterns. Despite these changes, iRadar
maintained an average accuracy rate of 88.07% after 60 days,
showcasing its resilience. To maintain efficacy over time,
methods like continuous learning are recommended [53].

V. RELATED WORK

Cross-modality translation for mmWave. Current research
in cross-modality translation for mmWave predominantly fo-
cuses on generating mmWave signals from videos [17]–[19].
Notably, Vid2Doppler [17] converts human activity captured in
videos into highly realistic synthesized mmWave radar data via

Days
6050403020101

Indoor Outdoor Obstacle

A
cc
ur
ac
y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Fig. 20: Long-term performance.
a transformer-based model. Similarly, the Midas system [19]
employs an enhanced transformer model in conjunction with
VS-Net to generate believable radar data and pinpoint salient
video segments. SynMotion [18] uses existing video datasets
to translate video information into synthetic mmWave data
for human motion sensing. Despite their advancements, these
video-based methods are vulnerable to environmental factors
such as occlusions and varying lighting conditions. To over-
come these challenges, iRadar leverages less susceptible
IMU data for modality translation.
mmWave-based gesture recognition. Current mmWave-
based gesture recognition methods are broadly divided into
heatmap-based approaches [29], [54] and point cloud-based
approaches [1], [6], [55]. Yuan et al. [29] utilized CNNs to rec-
ognize digital gestures from hand motion trajectories depicted
in heatmaps. On the other hand, point cloud-based methods,
such as Pantomime [6], process sparse 3D point clouds de-
rived from radar signals through deep learning frameworks.
Similarly, mHomeGes [1] recognizes arm gestures in real-time
by reconstructing point clouds and employing shallow neural
networks for classification. Despite the progress, point cloud-
based methods often struggle with sparsely filled point clouds
that fail to capture gestures with high fidelity, as evaluated
by recent study [56]. Additionally, traditional heatmap-based
approaches that rely on CNNs may be constrained by their
local receptive fields and shared weights, which limits their
capacity to understand gestural data.

VI. CONCLUSION

In this work, we introduce iRadar, which, to the best of
our knowledge, is the first framework for cross-modal IMU-
to-mmWave gesture recognition that circumvents the necessity
of additional mmWave hardware installation and obviates the
need for explicit data collection, substantially alleviating the
service providers’ burden. iRadar encompasses a diffusion-
driven translation method, a novel mmWave heatmap en-
hancement technique, and a Doppler transformer recognition
algorithm. Our comprehensive evaluation reveals that iRadar
achieves an average Top-3 accuracy rate of 99.82%.
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