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Abstract—From the perspective of privacy protection and
convenience, WiFi-based person identification in wireless sensing
has attracted extensive attention in recent years. In this paper,
we propose a WiFi-based person IDentification (WiID) method,
which can capture people’s valid physiological information from
Channel State Information (CSI) of different spatial streams
even when people are in motion. The key idea is to detect and
extract the short-time static states from the collected CSI and
achieve person identification based on these short-time signals.
By designing a Motion Sensitivity Vector (MSV) conversion
algorithm, WiID is able to segment CSI that carries individual
physiological information automatically without the individual
performing an assigned action or maintaining a specific state.
As far as we know, it is the first work that enables precise
person identification using people’s physiological information
when people do not keep stationary. Experimental results in real-
life scenarios show that WiID can achieve 92.65% of average
accuracy in three different environments.

I. INTRODUCTION

Growing attention has been drawn to the domain of WiFi
sensing especially on activity detection and recognition [1–7],
indoor positioning and tracking [8–11], and person identifi-
cation [12–19]. Person identification based on WiFi measure-
ments in these areas has been widely applied to indoor smart
sensing environments. Compared to the traditional identifica-
tion applications depending on personal biometric features,
such as the face and iris, person identification using wireless
signals can break through the limitations of the Line-of-Sight
(LoS) environment and alleviate the growing privacy concerns.

With the extensive deployment of low-cost off-the-shelf
WiFi devices in current indoor environments, numberous re-
searchers focus on using existing WiFi devices for person
identification. In the literature, person identification methods
using WiFi signals are divided into two categories, which
are behavior-based and bio-electromagnetic-based. Behavior-
based person identification method leverages the one-to-one
correspondence between the WiFi signal patterns and the hu-
man behavior patterns for identification. Bio-electromagnetic-
based person identification method exploits the influence of
personal physiological characteristics on WiFi signals trans-
mission. When the WiFi signals pass through the layers of
tissue in the human body, the human body of each layer
of tissue will have a different influence on the attenuation
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and travel time of the received signals. Due to individual
differences, such as different human body shapes, total body
water volume, skin conditions, different people will also have
different influences on the received WiFi signals.

Behavior patterns (e.g., gait, daily activities, etc.) of people
can be imitated and are prone to change in certain specific
circumstances (e.g., injury, weight bearing, etc.), while the
physiological characteristics remain relatively stable, as it
can reflect the property of the human body. Therefore, bio-
electromagnetic-based methods are more reliable. However,
the weak physiological information is easily overwhelmed by
action during data acquisition. Hence, most of the existing bio-
electromagnetic-based methods require the users to remain as
stationary as possible during data acquisition.

In order to accurately capture the weak physiological in-
formation from the received WiFi signals, we design a series
of signal denoising and transformation algorithms to extract
short-time static states from the motion state of the person.
Approximately, we assume that the Channel State Information
(CSI) collected at stationary state contains only physiological
information of the individual. Therefore, we first need to
precisely distinguish the different effects of people’s physio-
logical information and their movement information and then
determine the boundary of signal patterns reflected off the
stationary human from the collected data. In order to better
describe signal change patterns caused by the human body, we
harness Multiple-Input Multiple-Output (MIMO) technique to
capture the CSI from nine spatial streams and then extract
efficiently signal change representation for distinguishing a
person’s two states (e.g., stationary state and motion state).
Based on the analysis above, we propose WiID to quickly
detect and identify the moving people using commercial WiFi
devices.

The main contributions of this paper are as follows:
• We propose WiID, a bio-electromagnetic-based WiFi per-

son identification method that achieves identification even
when the person is in motion. We creatively decompose
an identification process into multiple sub-states to extract
valid physiological information.

• We design a signal conversion algorithm to obtain the
Motion Sensitivity Vector (MSV), which helps seg-
ment the raw data automatically to get valid bio-
electromagnetic information.
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• We evaluate WiID using extensive experiments of dif-
ferent factors. The experimental results show that our
method can achieve an average accuracy of 100% to
95.25% from a group of 2 to 14 people, respectively.

The rest of the paper is organized as follows. We first
review the related work in Section II and introduce the system
framework in Section III. Then, the experiments and evaluation
are given in Section IV. Finally, we conclude the paper in
Section V.

II. RELATED WORK

WiFi-based human sensing focuses on exploring the effect
of human on WiFi signals. Hence, the relevant prior work
includes WiFi-based activity detection and recognition and
WiFi-based person identification.

A. WiFi-based Activity Detection and Recognition

WiFi-based activity detection and recognition can be divided
into two categories, which are coarse-grained and fine-grained.
Coarse-grained activity detection and recognition is mainly for
activities with a relatively large range of movements, such as
fall, walking, standing, sitting, etc. While fine-grained activity
detection and recognition is mainly for activities with small
action magnitude, such as gestures, keystrokes, etc. Vital signs
(e.g., respiration, heartbeat, etc.) monitoring is essentially a
fine-grained activity detection task as well.

Early researchers use coarse-grained Received Signal
Strength Index (RSSI) for activity detection and recognition
[5]. With the modification of the Intel 5300 NIC by Halperin
et al. [20], a large number of researchers have started to use
fine-grained CSI for activity detection and recognition. RT-fall
[6] is the first work to use the phase difference of CSI from
different antennas for fall and fall-like activities detection, and
to implement fall detection by machine learning algorithms.
E-eyes [7] leverages the amplitude distribution of CSI as a
feature and combines Empirical Mode Decomposition (EMD)
and Dynamic Time Warping (DTW) algorithms to achieve
activity recognition. Meanwhile, with the development of deep
learning techniques, researchers start to combine deep learning
techniques to improve the fineness of activity recognition.
Daqing Zhang’s team proposes the Fresnel Zone model [4]
for the first time in the field of WiFi sensing, which provides
a theoretical basis for WiFi sensing tasks and effectively
improves the accuracy and stability of sensing by combining
deep learning techniques.

B. WiFi-based Person Identification

Behavior-based person identification. Behavior-based
identification is mainly dependent on the behavior patterns
(e.g., gait, etc.) which are different from person to person.
It is essentially a more fine-grained activity recognition task.

Jie Wang et al. propose an EMD based general Device-Free
Identification (DFI) framework and design a DFI system based
on gait and respiration characteristics under the guidance of
this framework [14]. WiWho [12] and WiFi-ID [13] are the
first to extract time domain or frequency domain features of

user’s gait in WiFi CSI for person identification. However,
early works have great dependence on the walking path. To
break the walking path limitation, WiDIGR [21] and WiPIGR
[17] utilize multiple transceiver pairs and propose a series
of signal processing techniques to eliminate path-dependent
features, and finally obtain path-independent spectral fea-
tures through spectrogram optimization and combine Convolu-
tional Neural Network (CNN) and Long Short-Term Memory
(LSTM) network for path independent gait recognition. Belal
Korany et al. propose a multi-dimensional framework span-
ning time, frequency and space domains, which can extract the
corresponding gait information of each walker, thus realizing
the identification of multiple individuals through walls [16].

Bio-electromagnetic-based person identification. Unlike
the above behavior-based method, bio-electromagnetic-based
method does not require the identified person to do any specific
actions or behavior. This kind of identification system is based
on fundamental principles in bio-electromagnetic which fo-
cuses on the influence of biological tissues on electromagnetic
(EM) waves.

Qinyi Xu et al. use Time-Reversal (TR) technology to
extract useful human bio-electromagnetic information from the
processed WiFi signals and leverage the strength of the spatial-
temporal resonances for through-wall human identification
[18]. In [19], Fei Wang et al. preprocess the raw signal to
mitigate the multipath effect and leverage 30 subcarriers and
their time-domain statistical characteristics to identify legal
users while rejecting illegal users through Support Vector
Machine (SVM) and threshold learning. However, state-of-the-
art bio-electromagnetic-based person identification methods
require the user to remain strictly stationary and fail to work
in situations where the user is moving.

III. SYSTEM DESIGN

A. System Overview

State 
Segmentation

Valid Information 
Acquisition

Bio-electromagnetic 
Information

Motion Sensitivity 
Vector

Data Collection
and Preprocessing

Raw Data Collection

Data Preprocessing

Person 
Identification

Noise Elimination and  
Dimension Reduction

LSTM based 
Neural Network

Fig. 1: System overview

In order to achieve accurate person identification with
commercial WiFi devices, we design a light-weighted person
identification system. As shown in Fig. 1, the system contains
three main modules, which are the data collection and pre-
processing module, the valid information acquisition module,
and the person identification module. The data collection and
preprocessing module is responsible for raw CSI data col-
lection and data preprocessing (e,g., denoising and outlier re-
moval). Then, in the valid information acquisition module, the
bio-electromagnetic information is extracted through Motion
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Sensitivity Vector (MSV) conversion, state segmentation, and
bio-electromagnetic information combination. Finally, person
identification is carried out in the last module, where the de-
noised data is fed into an LSTM neural network to extract the
hidden features and complete the multi-category task.

B. Data Collection and Preprocessing

We obtain the CSI of nine spatial streams from a 3 × 3
MIMO transceiver, each of which has 30 Orthogonal Fre-
quency Division Multiplexing (OFDM) subcarriers. Hence, we
have a total of 3 × 3 × 30 = 270 CSI values for each received
802.11n frame. The raw CSI of 30 subcarriers from one spatial
stream is shown in Fig. 2(a).

The representation of CSI in time domain is the channel
response H(t), which we received at time t can be expressed
as

H(t) = Hh(t) +He(t), (1)

where Hh(t), defined as the human component, carries the
human bio-electromagnetic information, and He(t) is gener-
ated from the environment. In this paper, we choose Hh(t)
for person identification, since it has the major influence
on the received CSI when the transmission environment is
unchanged.

As specified in [22], Hh(t) can be expressed as

Hh(t) =
∑
n∈P

αne
−jϕnδ(t− τn), (2)

where αn, ϕn and τn refer to the overall attenuation, the phase
offset, and the delay at time t between the transceiver on
the n-th path respectively. P denotes the set of all multipaths
that go through the human body. We choose αn as the valid
information because we only use the amplitude information
in the identification process. αn is a complicated parameter,
which depends on the antenna gain, propagation distance and
attenuation characteristics of the obstacles [22]. The antenna
gain and the propagation distance are predetermined once
we fix the transceiver in each experimental environment.
The attenuation characteristics of the human body depend
on permeability, relative permittivity, and conductivity, which
differ from person to person due to the different physiological
characteristics [23–25]. Hence, we use these physiological
information reflected in the CSI for person identification.

Due to the hardware imperfection and the multipath trans-
mission, the collected raw CSI contains a large number of
noise and outliers. We leverage the Hampel identifier and the
Butterworth low pass filter to remove the outliers and high
frequency noise. The preprocessed data is shown in Fig. 2(b).
Compared to the raw data in Fig. 2(a), preprocessed data
eliminates lots of outliers and the trend of the data is more
obvious.

C. Valid Information Acquisition

We propose a novel algorithm that can segment the raw CSI
data with the designed MSV to extract bio-electromagnetic
information from the short-time static states automatically
even when the person is in the motion state.

(a) Raw data (b) Preprocessed data

Fig. 2: Data collection and preprocessing

(a) Spectrogram (b) MSV

Fig. 3: Spectrogram v.s. Motion sensitivity vector

1) Motion Sensitivity Vector: As illustrated in Fig. 3(a),
the conventional spectrogram method doesn’t perform state
segmentation well because there is no significant frequency
difference between the static state and motion state. Mean-
while, the spectrogram method requires a fast packet rate. We
propose to magnify the difference between the motion and
static state by defining an MSV.

We obtain the variance matrix V3×30×L by a variance-based
sliding window method with a window size of 10 as follows

V3×30×L = getV arMatrix(C1
3×30×N ), (3)

where L = ⌊N/10⌋ and C1
3×30×N is the preprocessed signal

from transmitter antenna 1 and receiver antenna 1, 2, 3. The
amplitude changes of the variance signal are due to the motion
and other factors (e.g., environment noise), while the motion is
the most strong one. Hence, we perform threshold processing
for each element of variance matrix V3×30×L as shown in
Equation (4)

V(i,j,k) =

{
1, V(i,j,k) > µ1

0, otherwise, (4)

where µ1 is the variance threshold and it is set according
to the strength of motion to make the segmentation in the
following steps robust. In our experiments, we set µ1 to 0.1
experimentally. By the above threshold operation, the variance
matrix is transformed into a 0-1 binary matrix. Then we reduct
the binary matrix V3×30×L into a 2D matrix F90×L. Finally,
the 2D matrix from the three spatial streams with a total of
90 subcarriers are superimposed to obtain the MSV s

1×L
.

Since each value of the MSV is obtained by summing the
binary values of all 90 subcarriers, the MSV can combine
the information from all three spatial streams. Compared to
selecting a few subcarriers, MSV is much more robust. The
magnitude of MSV represents the degree of change in human
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motion. We predict the user keeping a stationary state and
the corresponding signal change is within range in normal
indoor environment when the MSV amplitude is close to 0.
Fig. 3(b) shows the MSV derived from the raw signal using
the algorithm above, in which the motion and static state is
much more detectable than that in Fig. 3(a).

The original 3D complex matrix is transformed into a real
vector, which can greatly condense the data size and promote
calculation efficiency. In addition, through the data transfor-
mation, the trend of signal changes is further strengthened,
which is more conducive for the accurate state segmentation
in the following step.

231     240 428          490 647     668
A B C

(a) MSV

0 100 200 300 400 500 600 700 800 900

Packets/10

0

1

A B C

(b) Pre-segmentation

0 100 200 300 400 500 600 700 800 900

Packets/10

0

1

B

(c) Final segmentation

Fig. 4: State detection and segmentation

2) State Detection and Segmentation: Once the MSV is
obtained, we need to perform state detection and segmentation
to get the bio-electromagnetic information. Based on the
observation from Fig. 3(b), we can see that there is obviously
different signal pattern changes from the MSV. In this part,
we propose a threshold-based adaptive signal segmentation
algorithm to obtain the static state through MSV.

Though the difference between the motion and stationary
states becomes more obvious in MSV, there are still some in-
terferences, which can cause misjudgment of the start and end
moment of the stationary state. Hence, a Gaussian-weighted
moving average filter is used to smooth the MSV s to s′.
Then the smoothed vector s′ is preliminarily segmented by
a threshold-based adaptive signal segmentation algorithm as
shown in Equation (5)

p(m) =

{
1, s′(m) < 2 ·min(s′) + µ2

0, otherwise,
(5)

where p is the preliminary segmentation result, µ2 is a
predefined threshold for segmentation which we set to 1
empirically. Since the level of motion strength varies from user
to user, the threshold in Equation (5) should be an adaptive
value instead of a fixed one. The thresholding in Equation
(5) is designed to adaptively divide the MSV into motion and
stationary states based on the minimum value of the given
MSV.

Actually, we perform the segmentation by decomposing the
motion state into numerous static sub-states that last for a
period of time, by which any static state can be detected.
The duration of the sub-state will affect the accuracy of
segmentation. Fig. 4(a) shows the MSV obtained from another
raw data. As shown in Fig. 4(a), the three valley ranges
denoted as A, B and C indicate that the user is stationary
in these three periods. The preliminary segmentation result
is shown in Fig. 4(b), which is decided by our previous
filtering algorithm and MSV algorithm based on the sliding
window. The theoretical minimum number of packets that can
be detected as stationary state for physiological information
extraction depends on the product of the window sizes of all
previous sliding window operations. Specifically, the window
size of the Hampel identifier during the data preprocessing is 5,
the window size in Equation (3) is 10, and the window size of
the Gaussian-weighted moving average filter before Equation
(5) is 10. Hence, the theoretical minimum number of data
packets in our experiments is 500. B contains enough (more
than 500) packets to extract physiological information, while A
and C are considered as anomalous noise due to the number of
packets less than 500. We propose to use the Hampel identifier
to remove these short time periods, which can extract sufficient
physiological information to get the final segmentation result
as shown in Fig. 4(c).

3) Bio-electromagnetic Information Combination: Once we
get the segmentation of the static state, we can determine the
start and end indexes of the data packets for the extraction
of the valid bio-electromagnetic information. As stated in
Section III-B, the CSI from nine spatial streams is used
as a unique feature to identify individuals. Therefore, each
person’s bio-electromagnetic information can be represented
by a 1×270 feature vector. Fig. 5 shows the CSI containing the
bio-electromagnetic information in 3D (i.e., Amplitude-Packet
Index-Subcarrier Index), these are 500 packets from three
different individuals and each packet has 270 CSI subcarriers.
As we can see, the attenuation of CSI sequences of different
individuals on different subcarriers has unique characteristics,
while the attenuation of the CSI sequences of the same
individual on different subcarriers at different packets remains
relatively stable.

D. Person Identification

Although the combined bio-electromagnetic information is
successfully extracted from the static state, there is inevitably
some subtle action noise produced by people. Principal Com-
ponent Analysis (PCA) is leveraged to de-noise the data, which
can preserve 99% of the primary information in the original
data. Using PCA, we cannot only remove the action noise
but also condense the data size while preserving the original
information as much as possible. The computational efficiency
can be improved in the following steps.

We feed the combined bio-electromagnetic data into the
neural network for hidden feature extraction. The neural
network consists of a sequence input layer, an LSTM layer,
a full connection layer, a softmax layer, and a classification
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(a) Person 1 (b) Person 2

(c) Person 3

Fig. 5: The feature vectors of different people

output layer. We feed 10 consecutive packets as one training
sample into the neural network for training. Although one
packet can describe a single individual, we find that using 10
consecutive packets training is significantly better than using
a single packet. Finally, the softmax layer is used for multi-
classification tasks to achieve person identification.

IV. EXPERIMENTS AND EVALUATION

A. Experiment Setup

(a) Env 1: Square (b) Env 2: Corridor (c) Env 3: Office

Fig. 6: Experimental environments

We used two laptops (ThinkPad T400) installed with Ubuntu
14.04 LTS as the transceivers, both of which are equipped
with Intel 5300 NIC. Specifically, one laptop with three
external omnidirectional antennas acts as the transmitter and
another laptop with the same configuration acts as the receiver.
Two laptops installed with CSI Tool [20] work in IEEE
802.11n Monitor mode on Channel 64 at 5.32 GHz. We
conducted the experiments with a group of 14 people in
three different environments. The details of environments and
volunteers are shown in Fig. 6 and Table I, respectively.
Each packet we received has a total of 270 subcarriers from
nine spatial streams. The transmission rate is set to be 1,000
Hz. The volunteer is asked to stand still at the midpoint of
the LoS to get the training sets and each volunteer collects
64,000 training samples. In the testing phase, the volunteer
can walk along or vertical to the LoS, but the volunteer’s
walking path should contain the midpoint of the LoS for
segmenting the valid bio-electromagnetic information. Each
group of data contains about 3,000 samples. The dataset
is collected with appropriate written informed consent and

human subjects approval and is publicly available on Github
(https://github.com/MDHan/WiID.git) for non-commercial sci-
entific research.

TABLE I: The details of the volunteers

ID Gender Height Weight ID Gender Height Weight
(cm) (kg) (cm) (kg)

1 Female 166 49 8 Male 174 72.5
2 Male 170 68 9 Male 180 79
3 Female 166 52 10 Female 174 62
4 Male 180 75 11 Female 165 55
5 Male 173 63.5 12 Male 182 81
6 Female 157 56 13 Female 155 52
7 Male 178 92.5 14 Male 171 67

B. Impact of Different Configurations

The volunteer number, spatial stream number, transceiver
distance, and transceiver height are 7, 9, 4m, and 0.7m,
respectively. All results in Table II are the average values of
three experiments. In addition, we have performed extensive
experiments to evaluate the performance of the proposed
method in Env 2 (Corridor). The experimental parameters are
consistent with the above except for the variables we validated.

TABLE II: The impact of different configuration parameter

Factor Value Accuracy Factor Value Accuracy

Env

Env 1 85.02% 1 91.54%

Env 2 97.12% Spatial
Stream 3 93.45%

Env 3 95.82% 9 97.12%

0m 85.94% 2m 91.62%
Transceiver

Height 0.7m 97.12% Transceiver
Distance 4m 97.12%

1.2m 80.45% 6m 92.64%

Environments: The effect of multipath can be fully re-
flected in this experiment. Since our identification system
works based on the attenuation of WiFi signals, more person
physiological information from CSI can be extracted in the
environments with more multipaths. The square environment
has little multipath due to the absence of other obstacles, while
indoor environments such as corridors and offices are rich in
multipath information. Less physiological information can be
captured in Env 1. Therefore the accuracy in Env 1 is much
lower than that in Env 2 and Env 3.

Spatial Stream Amount: The spatial streams number repre-
sents the number of antenna pairs used between the transmitter
(Tx) and the receiver (Rx). 1 means one Tx antenna and one
Rx antenna are used, 3 means one Tx antenna and three Rx
antennas are used, and 9 means three Tx antennas and three Rx
antennas are used. Since the spatial streams are independent
of each other, the more spatial streams there are, the more
physiological information can be extracted. Fine-grained CSI
of spatial streams can capture more bio-electromagnetic in-
formation of the human body in terms of different sights to
improve the robustness of person identification.
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Distance between Transceivers: We place the transceiver
at different horizontal distances to simulate the true indoor
environment and evaluate the best configuration parameters
about the transceiver for person identification. The sensing ac-
curacy of WiFi signals gradually decreases with the increasing
distance between the transceiver. Person identification achieves
the best accuracy of 97.12% in 4m and the accuracy decrease
to 92.64% in 6m. Once the distance is up to 8m, the accuracy
of person identification quickly decreases and cannot satisfy
the requirement of real application.

Height between Floor and Transceiver: The strong sens-
ing zone covered by WiFi signals depends on the height of the
transceiver. From the experimental results of different heights,
the best accuracy of person identification is 97.12% in 0.7m.
In other words, in the strong sensing zone, the stronger signal
changes can be reflected when WiFi signals penetrate through
the human body.

Apparel Changing and Stuff Carrying: The clothes peo-
ple wear are mainly made of non-conductor materials such
as cotton and polyester. In such cases, the apparel has no
effect on the propagation of electromagnetic waves. However
when there are some conductor materials (e.g., metal zipper)
on the clothes, these materials will have a slight effect on the
extracted bio-electromagnetic information, and the effect can
be removed by using classical signal processing methods, such
as PCA. The effect on bio-electromagnetic information caused
by the stuff in hand has a similar conclusion.

C. Impact of Group Size

The state-of-the-art WiFi person identification systems are
mainly for the smart home, office and other scenarios where
the crowd size is relatively small [12, 13, 18]. We conducted
three experiments with N(2 ≤ N ≤ 14) randomly selected
volunteers to investigate the performance of our method on
different group sizes in Env 2. The average accuracy of the
experiments are shown in Fig. 7. When the volunteers number
increases from 2 to 14, the identification accuracy decreases
from 100% to 95.25%. As we all know, the similar physio-
logical information of individuals will increase the difficulty
of identification with increasing the number of volunteers.
However, even in a group of 14 volunteers, the identification
accuracy of our method is still above 95%, which indicates
that our approach can achieve robust person identification in
small crowd sizes.

D. Performance Comparison

The WiID is compared with the state-of-the-art bio-
electromagnetic based WiFi person identification system
WiPIN [19] in Env 2. Since WiPIN only works when the user
is completely stationary, we evaluate it using the stationary
data in our dataset. As shown in Fig. 8, though the mean
accuracy of WiPIN and our approach (WiID/M) tends to
decline with the group size increase, our proposed WiID
has a significant performance improvement over WiPIN. Our
approach is superior to WiPIN for two reasons. The first reason
is that the motion noise can seriously affect the performance of

Fig. 7: Accuracy of different group size

Fig. 8: Performance comparison

the WiPIN algorithm, while our proposed method are designed
to remove motion noise and only preserve information in
the stationary state. The second reason is that WiPIN only
utilizes the data from 30 subcarriers of one spatial stream
and uses the simple SVM algorithm for classification. When
the group size increases, using single spatial stream data
with the SVM algorithm fails to extract sufficient features to
distinguish multiple people. However, our method utilizes all
270 subcarriers of nine spatial streams with the LSTM based
algorithm and is able to extract richer features.

Our method also achieves better performance than WiPIN
using only the stationary data (WiID/S) and remains stable,
especially in the case of larger group size. Since the data
collected in dynamic scenes may contain motion noise, which
affects the accuracy of identification, our approach has better
performance in the stationary scenes than in the dynamic
scenes.

V. CONCLUSION

In this paper, the WiID, a novel WiFi-based moving per-
son identification method, has been proposed to map WiFi
CSI from different spatial streams with human physiological
characteristics, by which accurate person identification can
be successively achieved. Specially, short-time segmentation
is carried out through an MSV design in our work, which
facilitates our method to perform well with moving individual
identification. Experimental results in different indoor and out-
door scenarios have shown that WiID can achieve accurate and
robust person identification under various system deployments.
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